5.2 Thefirst t derivativetest
97
Exercises
Inproblems1–12,findalllocalmaximumandminimumpoints(x,y)bythemethodofthissection.
1. y=x
2
−x
2. y=2+3x−x
3
3. y=x
3
−9x
2
+24x
4. y=x
4
−2x
2
+3
5. y=3x
4
−4x
3
6. y=(x
2
−1)/x
7. y=3x
2
−(1/x
2
)
8. y=cos(2x)−x
9. f(x)=
x−1 x<2
x
2
x≥2
10. f(x)=
8
<
:
x−3 x<3
x
3
3≤x≤5
1/x
x>5
11. f(x)=x
2
−98x+4
12. f(x)=
−2
x=0
1/x
2
x=0
13. Recallthatforanyrealnumber r xthereisauniqueintegernsuchthatn≤x<n+1,and
the greatest integer functionis givenby x = n, as shownin figure 3.1. Where e are the
criticalvaluesofthegreatestintegerfunction?Whicharelocalmaximaandwhicharelocal
minima?
14. Explainwhythefunctionf(x)=1/xhasnolocalmaximaorminima.
15. Howmanycriticalpointscanaquadraticpolynomialfunctionhave? 
16. Showthatacubicpolynomialcanhaveatmosttwocriticalpoints. . Giveexamplestoshow
thatacubicpolynomialcanhavezero,one,ortwocriticalpoints.
17. Explore e the familyoffunctions f(x)=x
3
+cx+1where cisa constant. . Howmanyand
whattypesoflocalextremesarethere? Youranswershoulddependonthevalueofc,that
is,differentvaluesofcwillgivedifferentanswers.
18. Wegeneralizetheprecedingtwoquestions. . Letnbeapositiveintegerandletf beapoly-
nomialofdegreen. Howmanycriticalpointscanfhave?(Hint: RecalltheFundamental
TheoremofAlgebra,whichsaysthatapolynomialofdegreenhasatmostnroots.)
The method of the previoussection for deciding whether there e is a a localmaximumor
minimumat a criticalvalue isnot alwaysconvenient. . We e can insteaduse information
aboutthederivativef(x)todecide;sincewehavealreadyhadtocomputethederivative
tofindthecriticalvalues,thereisoftenrelativelylittleextraworkinvolvedinthismethod.
Howcanthederivativetelluswhether thereisamaximum,minimum,orneitherat
apoint? Supposethatf(a)=0. . Ifthereisalocalmaximumwhenx=a,thefunction
mustbelowernearx=athanitisrightatx=a.Ifthederivativeexistsnearx=a,this
meansf
(x)>0whenxisnearaandx<a,becausethefunctionmust“slopeup”just
totheleftofa. Similarly,f(x)<0whenxisnearaandx>a,becausef f slopesdown
fromthelocalmaximumaswemovetothe right. . Usingthesamereasoning,ifthereis
alocalminimumatx=a,thederivativeoff mustbenegativejusttotheleftofaand
Convert pdf pages to powerpoint slides - C# Create PDF from PowerPoint Library to convert pptx, ppt to PDF in C#.net, ASP.NET MVC, WinForms, WPF
Online C# Tutorial for Creating PDF from Microsoft PowerPoint Presentation
how to convert pdf to powerpoint on; convert pdf to powerpoint slides
Convert pdf pages to powerpoint slides - VB.NET Create PDF from PowerPoint Library to convert pptx, ppt to PDF in vb.net, ASP.NET MVC, WinForms, WPF
VB.NET Tutorial for Export PDF file from Microsoft Office PowerPoint
how to convert pdf file to powerpoint presentation; converting pdf to ppt
98
Chapter5 CurveSketching
positivejusttotheright.Ifthederivativeexistsnearabutdoesnotchangefrompositive
tonegativeornegativetopositive,thatis,itispostiveonbothsidesornegativeonboth
sides,thenthereisneitheramaximumnorminimumwhenx=a. Seethefirstgraphin
figure5.1andthegraphinfigure5.2forexamples.
EXAMPLE 5.4
Findalllocalmaximumandminimumpointsforf(x)=sinx+cosx
usingthefirstderivativetest. Thederivativeisf
(x)=cosx−sinxandfromexample5.3
thecriticalvaluesweneedtoconsiderareπ/4and5π/4.
Thegraphsofsinxandcosxareshowninfigure5.4.Justtotheleftofπ/4thecosine
islargerthanthesine,sof(x)ispositive;justtotherightthecosineissmallerthanthe
sine,sof
(x)isnegative. Thismeansthereisalocalmaximumatπ/4. Justtotheleft
of5π/4thecosineissmallerthanthesine,andtotherightthecosineislargerthanthe
sine. Thismeansthatthederivativef(x)isnegativetotheleftandpositivetotheright,
sof hasalocalminimumat5π/4.
π
4
4
..
..
..
..
...
..
..
..
...
..
..
..
..
...
..
..
...
..
..
..
...
..
..
...
..
..
...
..
..
...
..
...
..
...
.....
..
...
..
...
...
...
...
..
...
...
...
....
...
....
...
....
....
.....
......
.......
............
...........
............
.......
......
....
.....
...
....
....
...
...
...
...
...
...
...
...
...
..
...
..
...
.....
...
..
..
...
..
...
..
..
...
..
..
...
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
..
...
..
..
..
...
..
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
...
..
..
...
..
..
...
..
...
..
..
...
...
..
...
..
...
..
...
...
...
...
..
....
...
...
...
....
...
....
....
.....
.....
.......
..........
..................
..........
.......
.....
.....
....
....
...
....
...
...
....
...
..
...
...
...
...
..
...
..
...
...
..
...
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
..
...
..
.
......
............
.......
......
....
.....
....
...
....
...
...
....
...
...
..
...
...
...
..
...
...
..
.....
...
..
...
..
..
...
..
...
..
..
...
..
..
..
...
..
..
...
..
..
..
...
..
..
..
..
...
..
..
..
...
..
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
..
...
..
..
...
..
..
..
...
..
..
...
..
..
...
..
...
..
...
..
...
..
...
..
...
...
..
...
...
...
...
...
...
...
...
....
....
...
.....
....
......
......
...........
.................
..........
.......
.....
.....
....
....
...
....
...
....
...
...
...
...
..
...
...
..
...
...
..
...
..
...
..
...
..
..
...
..
...
..
..
...
..
..
..
...
..
..
...
..
..
..
...
..
..
..
...
..
..
..
..
...
..
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
...
..
...
..
..
...
..
...
..
.....
...
..
...
...
..
...
...
...
...
...
...
...
....
...
....
....
....
.....
.....
.......
............
......
Figure 5.4
Thesineandcosine.
Exercises
In1–13,findallcriticalpointsandidentifythemaslocalmaximumpoints,localminimumpoints,
orneither.
1. y=x
2
−x
2. y=2+3x−x
3
3. y=x
3
−9x
2
+24x
4. y=x
4
−2x
2
+3
5. y=3x
4
−4x
3
6. y=(x
2
−1)/x
7. y=3x
2
−(1/x
2
)
8. y=cos(2x)−x
9. f(x)=(5−x)/(x+2)
10. f(x)=|x
2
−121|
11. f(x)=x
3
/(x+1)
12. f(x)=
x
2
sin(1/x) x=0
0
x=0
13. f(x)=sin
2
x
14. Findthemaximaandminimaoff(x)=secx. 
C# PowerPoint - How to Process PowerPoint
PowerPoint Document Processing Control in Visual C#.NET of RasterEdge .NET Imaging SDK is a reliable and professional PowerPoint slides/pages editing and
converting pdf to ppt online; change pdf to powerpoint online
VB.NET PowerPoint: Sort and Reorder PowerPoint Slides by Using VB.
clip art or screenshot to PowerPoint document slide large amount of robust PPT slides/pages editing methods & profession imaging controls, PDF document, image
converting pdf to powerpoint online; pdf to powerpoint
5.3 Thesecondderivativetest
99
15. Letf(θ)=cos
2
(θ)−2sin(θ). Findtheintervalswherefisincreasingandtheintervalswhere
f isdecreasinginsideof[0,2π]. . Usethis s informationtoclassify thecriticalpointsoff f as
eitherlocalmaximums,localminimums,orneither. 
16. Letr>0.Findthelocalmaximaandminimaofthefunctionf(x)=
r−xonitsdomain
(−r,r).Sketchthecurveandexplainwhytheresultisunsurprising.
17. Letf(x)=ax
2
+bx+c witha=0. . Show w thatf f has s exactlyonecriticalpointusingthe
firstderivativetest. Giveconditionsonaandbwhichguaranteethatthecriticalpointwill
beamaximum. Itispossibletoseethiswithoutusingcalculusatall;explain.
The basis s of f the e first derivative test t is s that t if the e derivative e changesfrom m positive e to
negativeatapointatwhichthederivativeiszerothenthereisalocalmaximumat the
point, and similarly for r a localminimum. . If f f
changesfrompositive to negative it is
decreasing;thismeansthatthederivativeoff
,f

,mightbenegative,andifinfact f

isnegativethen f
isdefinitelydecreasing,so there isalocalmaximumatthe pointin
question. Note e wellthat f
mightchangefrompositiveto negative while f

iszero,in
whichcase f

givesusno information about thecriticalvalue. . Similarly, , if f
changes
fromnegativetopositivethereisalocalminimumat thepoint,andf
isincreasing. If
f

>0atthepoint,thistellsusthatf
isincreasing,andsothereisalocalminimum.
EXAMPLE 5.5
Consider again f(x) =sinx+cosx,withf
(x)=cosx−sinx and
f

(x)=−sinx−cosx. Sincef

(π/4)=−
2/2−
2/2=−
2<0,weknowthereisa
localmaximumatπ/4. Sincef(5π/4)=−−
2/2−−
2/2=
2>0,thereisalocal
minimumat5π/4.
Whenitworks,thesecondderivativetestisoftentheeasiestwaytoidentifylocalmax-
imumandminimumpoints. Sometimesthetestfails,andsometimesthesecondderivative
isquitedifficulttoevaluate;insuchcaseswemustfallbackononeoftheprevioustests.
EXAMPLE 5.6
Letf(x) =x
4
. The e derivativesare f
(x) =4x
3
and f

(x)=12x
2
.
Zeroistheonlycriticalvalue,butf

(0)=0,sothesecondderivativetesttellsusnothing.
However,f(x)ispositiveeverywhereexceptatzero,soclearlyf(x)hasalocalminimum
atzero. Ontheotherhand,f(x)=−x
4
alsohaszeroasitsonlycriticalvalue,andthe
secondderivativeisagainzero,but−x
4
hasalocalmaximumatzero.
VB.NET PowerPoint: Process & Manipulate PPT (.pptx) Slide(s)
add image to slide, extract slides and merge library SDK, this VB.NET PowerPoint processing control powerful & profession imaging controls, PDF document, image
image from pdf to powerpoint; change pdf to ppt
VB.NET PowerPoint: Use PowerPoint SDK to Create, Load and Save PPT
Besides, users also can get the precise PowerPoint slides count as soon as the PowerPoint document has been loaded by using the page number getting method.
how to convert pdf to ppt online; change pdf to powerpoint
100
Chapter5 Curve e Sketching
Exercises
Findalllocalmaximumandminimumpointsbythesecondderivativetest.
1. y=x
2
−x
2. y=2+3x−x
3
3. y=x
3
−9x
2
+24x
4. y=x
4
−2x
2
+3
5. y=3x
4
−4x
3
6. y=(x
2
−1)/x
7. y=3x
2
−(1/x
2
)
8. y=cos(2x)−x
9. y=4x+
1−x
10. y=(x+1)/
p
5x+35
11. y=x
5
−x
12. y=6x+sin3x
13. y=x+1/x
14. y=x
2
+1/x
15. y=(x+5)
1/4
16. y=tan
2
x
17. y=cos
2
x−sin
2
x
18. y=sin
3
x
Weknowthatthesignofthederivativetellswhetherafunctionisincreasingordecreasing.
Forexample,anytimethatf(x)>0,thatmeansthatf(x)isincreasing. Thesignofthe
secondderivativef

(x)tellsuswhetherf
isincreasingordecreasing;wehaveseenthat
iff
iszeroandincreasingat apointthenthereisalocalminimumat thepoint,andif
f iszeroanddecreasingatapointthenthereisalocalmaximumatthepoint. Thus,we
extractedinformationaboutf frominformationaboutf

.
Wecangetinformationfromthe signoff

evenwhenf
isnotzero. Supposethat
f(a)>0. Thismeansthatnearx=af isincreasing. . Iff(a)>0,thismeansthatf
slopesupandisgettingsteeper;iff
(a)<0,thismeansthatfslopesdownandisgetting
lesssteep. Thetwosituationsareshowninfigure5.5. Acurvethatisshapedlikethisis
calledconcaveup.
a
.....
.......
.....
....
....
...
....
...
..
...
...
..
...
..
...
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
a
.
...
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
...
..
..
..
..
...
..
...
..
...
...
....
...
.....
.....
...........
..
Figure5.5
f

(a)>0: f
(a)positiveandincreasing,f
(a)negativeandincreasing.
Nowsupposethatf

(a)<0.Thismeansthatnearx=af
isdecreasing.Iff
(a)>0,
thismeansthatf slopesupandisgettinglesssteep;iff
(a)<0,thismeansthatfslopes
VB.NET PowerPoint: Extract & Collect PPT Slide(s) Using VB Sample
pages of document 1 and some pages of document please read this VB.NET PowerPoint slide processing powerful & profession imaging controls, PDF document, image
convert pdf to powerpoint with; how to convert pdf to ppt for
VB.NET PowerPoint: Merge and Split PowerPoint Document(s) with PPT
of the split PPT document will contain slides/pages 1-4 code in VB.NET to finish PowerPoint document splitting If you want to see more PDF processing functions
add pdf to powerpoint slide; converting pdf to powerpoint
5.4 Concavity y andinflectionpoints
101
a
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
...
..
..
...
..
...
..
...
...
...
...
....
...
....
.....
.......
......
a
...
...
...
...
....
..
...
...
...
..
...
..
...
..
...
..
..
...
..
..
...
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
Figure 5.6
f

(a)<0: f
(a)positiveanddecreasing,f
(a)negativeanddecreasing.
downandisgettingsteeper. Thetwosituationsareshowninfigure5.6. Acurvethatis
shapedlikethisiscalledconcavedown.
Ifweare tryingtounderstandtheshape of thegraphofafunction,knowingwhere
itisconcaveupandconcavedownhelpsustogetamoreaccuratepicture. Ofparticular
interestarepointsatwhichtheconcavitychangesfromuptodownordowntoup;such
pointsarecalledinflectionpoints. Iftheconcavitychangesfromuptodownatx=a,f

changesfrompositivetotheleftofatonegativetotherightofa,andusuallyf

(a)=0.
Wecanidentifysuchpointsbyfirstfindingwheref(x)iszeroandthencheckingtosee
whetherf

(x) doesin factgofrompositiveto negative ornegativeto positive atthese
points.Notethatitispossiblethatf

(a)=0buttheconcavityisthesameonbothsides;
f(x)=x
4
isanexample.
EXAMPLE5.7
Describetheconcavityoff(x)=x
3
−x. f
(x)=3x
2
−1,f

(x)=6x.
Since f

(0)=0,thereispotentiallyaninflectionpoint at zero. . Since e f

(x) >0 when
x>0andf(x)<0whenx<0theconcavitydoeschangefromdowntoupatzero,and
thecurveisconcavedownforallx<0andconcaveupforallx>0.
Notethatweneedtocomputeandanalyzethesecondderivativetounderstandcon-
cavity,sowemayaswelltrytousethesecondderivativetestformaximaandminima.If
forsomereasonthisfailswecanthentryoneoftheothertests.
Exercises
Describetheconcavityofthefunctionsin1–18.
1. y=x
2
−x
2. y=2+3x−x
3
3. y=x
3
−9x
2
+24x
4. y=x
4
−2x
2
+3
5. y=3x
4
−4x
3
6. y=(x
2
−1)/x
7. y=3x
2
−(1/x
2
)
8. y=sinx+cosx
9. y=4x+
1−x
10. y=(x+1)/
p
5x+35
11. y=x
5
−x
12. y=6x+sin3x
13. y=x+1/x
14. y=x
2
+1/x
VB.NET PowerPoint: Complete PowerPoint Document Conversion in VB.
VB.NET PowerPoint Conversion Control to render and convert target PowerPoint document to various image or document formats, such as PDF, BMP, TIFF
converting pdf to ppt; conversion of pdf to ppt online
VB.NET PowerPoint: Convert & Render PPT into PDF Document
Using this VB.NET PowerPoint to PDF converting demo code below, you can easily convert all slides of source PowerPoint document into a multi-page PDF file.
picture from pdf to powerpoint; convert pdf to ppt online
102
Chapter5 Curve e Sketching
15. y=(x+5)
1/4
16. y=tan
2
x
17. y=cos
2
x−sin
2
x
18. y=sin
3
x
19. Identifytheintervals s onwhichthegraphofthefunctionf(x)=x
4
−4x
3
+10isofoneof
thesefourshapes:concaveupandincreasing;concaveupanddecreasing;concavedownand
increasing;concavedownanddecreasing. 
20. Describetheconcavityofy=x
3
+bx
2
+cx+d. Youwillneedtoconsider r differentcases,
dependingonthevaluesofthecoefficients.
21. Let t nbeaninteger greaterthanorequaltotwo,andsuppose f f isapolynomialofdegree
n. How w many inflectionpointscan f have? ? Hint: : Use e thesecondderivativetestandthe
fundamentaltheoremofalgebra.
Averticalasymptoteisaplacewherethefunctionbecomesinfinite,typicallybecausethe
formulaforthefunctionhasadenominatorthatbecomeszero.Forexample,thereciprocal
functionf(x)=1/xhasaverticalasymptoteatx=0,andthefunctiontanxhasavertical
asymptoteatx=π/2(andalsoatx=−π/2,x=3π/2,etc.).Whenevertheformulafora
functioncontainsadenominatoritisworthlookingforaverticalasymptotebycheckingto
seeifthedenominatorcaneverbezero,andthencheckingthelimitatsuchpoints. Note
thatthereisnotalwaysaverticalasymptotewherethederivativeiszero: f(x)=(sinx)/x
hasa zero denominator at x =0,butsince lim
x→0
(sinx)/x=1 there isnoasymptote
there.
Ahorizontalasymptoteisahorizontallinetowhichf(x)getscloserandcloserasx
approaches∞ (or as s x x approaches−∞). . For r example, , the e reciprocalfunctionhasthe
x-axisforahorizontalasymptote. Horizontalasymptotescanbeidentifiedbycomputing
thelimitslim
x→∞
f(x)andlim
x→−∞
f(x). Sincelim
x→∞
1/x =lim
x→−∞
1/x=0,the
liney=0(thatis,thex-axis)isahorizontalasymptoteinbothdirections.
Some functionshave asymptotesthat t are e neither r horizontalnor r vertical, , but some
other line. . Such h asymptotesare somewhatmore difficult to identifyand wewillignore
them.
If the domain of f the e function does not extend out to infinity, , we e should also o ask
what happensasx approachesthe boundaryof thedomain. . Forexample,thefunction
y=f(x)=1/
r2−xhasdomain−r<x<r,andybecomesinfiniteasxapproaches
eitherror−r.Inthiscasewemightalsoidentifythisbehaviorbecausewhenx=±rthe
denominatorofthefunctioniszero.
C# PowerPoint: C# Guide to Add, Insert and Delete PPT Slide(s)
summary> /// Delete pages from PowerPoint view detailed guide for each PowerPoint slide processing powerful & profession imaging controls, PDF document, tiff
convert pdf to powerpoint slides; convert pdf into ppt online
VB.NET PowerPoint: Read, Edit and Process PPTX File
VB.NET PowerPoint: Convert & Render PPTX Slide, VB.NET PowerPoint: Watermark PPTX Slide. How to convert PowerPoint to PDF, render PowerPoint to SVG
convert pdf to powerpoint; converting pdf to ppt online
5.5 AsymptotesandOther r Thingsto o LookFor
103
Ifthereareanypointswherethederivativefailstoexist(acusporcorner),thenwe
shouldtakespecialnoteofwhatthefunctiondoesatsuchapoint.
Finally,itisworthwhiletonoticeanysymmetry. Afunctionf(x)thathasthesame
value for r −x x as for x, , i.e., f(−x) = f(x), , is called an n “even n function.” ” Its s graph h is
symmetric withrespecttothe y-axis. . Someexamplesofevenfunctionsare: : x
n
whenn
isan even number, cosx, and sin
2
x. On n the other hand, a function that satisfies s the
propertyf(−x)=−f(x)iscalledan“oddfunction.” Itsgraphissymmetricwithrespect
totheorigin.Someexamplesofoddfunctionsare:x
n
whennisanoddnumber,sinx,and
tanx.Ofcourse,mostfunctionsareneitherevennorodd,anddonothaveanyparticular
symmetry.
Exercises
Sketchthecurves. Identifyclearly y anyinterestingfeatures,includinglocalmaximumandmini-
mumpoints,inflectionpoints,asymptotes,andintercepts.
1. y=x
5
−5x
4
+5x
3
2. y=x
3
−3x
2
−9x+5
3. y=(x−1)
2
(x+3)
2/3
4. x
2
+x
2
y
2
=a
2
y
2
,a>0.
5. y=xe
x
6. y=(e
x
+e
−x
)/2
7. y=e
−x
cosx
8. y=e
x
−sinx
9. y=e
x
/x
10. y=4x+
1−x
11. y=(x+1)/
p
5x+35
12. y=x
5
−x
13. y=6x+sin3x
14. y=x+1/x
15. y=x
2
+1/x
16. y=(x+5)
1/4
17. y=tan
2
x
18. y=cos
2
x−sin
2
x
19. y=sin
3
x
20. y=x(x
2
+1)
21. y=x
3
+6x
2
+9x
22. y=x/(x
2
−9)
23. y=x
2
/(x
2
+9
24. y=2
x−x
25. y=3sin(x)−sin
3
(x),forx∈[0,2π]
26. y=(x−1)/(x
2
)
For each of the e following five functions, , identify y any y vertical and horizontal asymptotes, , and
identifyintervalsonwhichthefunctionisconcaveupandincreasing;concaveupanddecreasing;
concavedownandincreasing;concavedownanddecreasing.
27. f(θ)=sec(θ)
28. f(x)=1/(1+x
2
)
29. f(x)=(x−3)/(2x−2)
30. f(x)=1/(1−x
2
)
31. f(x)=1+1/(x
2
)
32. Let t f(x) = = 1/(x
2
−a
2
), where e a a ≥ 0. . Find d any y vertical l andhorizontal asymptotes s and
theintervalsuponwhichthegivenfunctionisconcave upandincreasing;concave upand
104
Chapter5 Curve e Sketching
decreasing; concave downandincreasing; concave down and decreasing. . Discuss s how the
valueofaaffectsthesefeatures.
6
ApplicationsoftheDerivative
Manyimportantappliedproblemsinvolvefindingthebestwaytoaccomplishsometask.
Oftenthisinvolvesfindingthemaximumorminimumvalueofsomefunction:theminimum
timetomakeacertainjourney,theminimumcostfordoingatask,themaximumpower
thatcanbegeneratedbyadevice,andsoon. Manyoftheseproblemscanbesolvedby
findingtheappropriatefunctionandthenusingtechniquesofcalculustofindthemaximum
ortheminimumvaluerequired.
Generallysuchaproblemwillhavethefollowingmathematicalform:Findthelargest
(orsmallest)valueoff(x)whena≤x≤b. Sometimesaorbareinfinite,butfrequently
therealworldimposessomeconstraintonthevaluesthatxmayhave.
Suchaproblemdiffersintwowaysfromthelocalmaximumandminimumproblems
weencounteredwhengraphingfunctions: Weareinterestedonlyinthefunctionbetween
aandb,andwewanttoknowthelargestorsmallestvaluethatf(x)takeson,notmerely
valuesthat are the largestor smallest in asmall l interval. . That t is, , weseeknot t alocal
maximumor minimum but a a global maximumor minimum, , sometimesalso o called an
absolutemaximumorminimum.
Anyglobalmaximumorminimummustofcoursebealocalmaximumorminimum.
Ifwefindallpossiblelocalextrema,thentheglobalmaximum,ifitexists,mustbethe
largestofthelocalmaximaandtheglobalminimum,ifitexists,mustbethesmallestof
thelocalminima. Wealreadyknowwherelocalextremacanoccur: onlyatthosepoints
atwhichf
(x)iszeroorundefined. Actually,therearetwoadditionalpointsatwhicha
105
106
Chapter6 Applications s oftheDerivative
maximumorminimumcanoccur iftheendpointsaandbarenot infinite,namely,ata
andb.Wehavenotpreviouslyconsideredsuchpointsbecausewehavenotbeeninterested
inlimitingafunctiontoasmallinterval.Anexampleshouldmakethisclear.
−2
1
..
..
.
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
...
..
...
..
...
...
....
....
.....
................
......
....
...
...
...
...
..
...
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
.
Figure 6.1
Thefunctiong(x)orf(x)=x
2
truncatedto[−2,1]
EXAMPLE 6.1
Findthemaximumandminimumvaluesoff(x)=x
2
ontheinterval
[−2,1],showninfigure6.1. Wecomputef
(x)=2x,whichiszeroatx=0andisalways
defined.
Sincef
(1)=2wewouldnotnormallyflagx=1asapointofinterest,butitisclear
fromthegraphthatwhenf(x)isrestrictedto [−2,1]thereisalocalmaximumatx=1.
Likewisewewouldnotnormallypayattentiontox=−2,butsincewehavetruncatedf
at−2wehaveintroducedanewlocalmaximumthereaswell. Inatechnicalsensenothing
newisgoingonhere: Whenwetruncatef weactuallycreateanewfunction,let’scallit
g,thatisdefinedonlyontheinterval[−2,1]. Ifwetrytocomputethederivativeofthis
newfunctionweactuallyfindthatitdoesnothaveaderivativeat−2or1. Why?Because
tocomputethederivativeat1wemustcomputethelimit
lim
∆x→0
g(1+∆x)−g(1)
∆x
.
Thislimit doesnotexistbecause when∆x>0,g(1+∆x) isnotdefined. . Itissimpler,
however,simplytorememberthatwemustalwayschecktheendpoints.
Sothefunctiong,thatis,f restrictedto[−2,1],hasonecriticalvalueandtwofinite
endpoints,anyofwhichmightbetheglobalmaximumorminimum. Wecouldfirstdeter-
minewhichofthesearelocalmaximumorminimumpoints(orneither);thenthelargest
Documents you may be interested
Documents you may be interested