6.1 Optimization
117
areaas theclearglass(k is between0and1). . Ifthe e distancefromtopto bottom(across
boththerectangleandthesemicircle)isafixeddistanceH,find(intermsofk)theratioof
verticalsidetohorizontalsideoftherectangleforwhichthewindowletsthroughthemost
light. 
23. You u are designing a poster r to contain n a fixedamount A of printing (measured in square
centimeters)andhavemarginsofacentimetersatthetopandbottomandbcentimetersat
thesides. Findtheratioofverticaldimensiontohorizontaldimensionoftheprintedareaon
theposterifyouwanttominimizetheamountofposterboardneeded. 
24. Thestrengthofarectangularbeamisproportionaltotheproductofitswidthwtimesthe
square ofits depthd. . Findthe e dimensionsofthe strongest beamthat canbe cutfroma
cylindricallogofradiusr.
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
...
..
...
..
...
..
...
...
...
....
...
....
.....
.....
.......
.............
.........
.............
......
......
....
....
....
...
...
...
...
...
..
...
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
...
..
...
...
...
...
...
....
....
....
.....
......
..........
...................
..........
......
.....
....
....
....
...
...
...
...
...
..
...
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
..........................................................................................
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
.............................................................................................
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
|
|
d
|
|
←−
w
−→
Figure 6.6
Cuttingabeam.
25. Whatfractionofthevolumeofasphereistakenupby y thelargest cylinderthat canbefit
insidethesphere? 
26. TheU.S.post t officewillacceptaboxforshipmentonlyifthesumofthelengthandgirth
(distancearound)isatmost108in.Findthedimensionsofthelargestacceptableboxwith
squarefrontandback.
27. Findthe e dimensions of thelightestcylindricalcancontaining 0.25liter (=250cm
3
) if the
topandbottomaremadeofamaterialthatistwiceasheavy(perunitarea)asthematerial
usedfortheside. 
28. Aconicalpapercupistohold1/4ofaliter. Findtheheightandradiusoftheconewhich
minimizes theamount of paper neededtomakethe cup. . Use e theformulaπr
r+hfor
theareaofthesideofacone. 
29. Aconicalpapercupistoholdafixedvolumeofwater.Findtheratioofheighttobaseradius
oftheconewhichminimizestheamountofpaperneededtomakethecup. Usetheformula
πr
r+hfortheareaofthesideofacone,calledthelateral areaofthecone. 
30. Ifyoufittheconewiththelargestpossiblesurfacearea(lateralareaplusareaofbase)into
asphere,whatpercentofthevolumeofthesphereisoccupiedbythecone? 
31. Two o electrical charges, one a positive charge Aof magnitude e a a and d the other r a negative
chargeBofmagnitudeb,arelocatedadistancecapart. Apositivelychargedparticle e P is
situatedontheline betweenAandB.Findwhere P P shouldbe e put so thatthe pullaway
fromAtowardsBisminimal. Hereassumethattheforcefromeachchargeisproportional
Convert pdf to editable ppt - C# Create PDF from PowerPoint Library to convert pptx, ppt to PDF in C#.net, ASP.NET MVC, WinForms, WPF
Online C# Tutorial for Creating PDF from Microsoft PowerPoint Presentation
convert pdf file to powerpoint presentation; convert pdf into powerpoint online
Convert pdf to editable ppt - VB.NET Create PDF from PowerPoint Library to convert pptx, ppt to PDF in vb.net, ASP.NET MVC, WinForms, WPF
VB.NET Tutorial for Export PDF file from Microsoft Office PowerPoint
table from pdf to powerpoint; convert pdf to editable ppt online
118
Chapter6 Applications s oftheDerivative
tothestrengthof the sourceandinverselyproportionaltothesquareofthedistancefrom
thesource. 
32. Findthefractionoftheareaofatrianglethatisoccupiedbythelargestrectanglethatcan
bedrawninthetriangle(withoneofitssidesalongasideofthetriangle). Showthatthis
fractiondoesnotdependonthedimensionsofthegiventriangle. 
33. How w areyour answers toProblem affectedif the costper itemfor the x items, , instead
ofbeingsimply$2,decreasesbelow$2inproportiontox(becauseofeconomyofscaleand
volumediscounts)by1centforeach25itemsproduced? 
34. Youarestandingnearthesideofalargewadingpoolofuniformdepthwhenyouseeachild
introuble. Youcanrunataspeedv
1
onlandandataslowerspeedv
2
inthewater. Your
perpendiculardistancefromthesideofthepoolisa,thechild’sperpendiculardistanceisb,
andthedistancealongthesideofthepoolbetweentheclosestpointtoyouandtheclosest
point tothe e child d is s c (see the figure below). . Without t stopping g to do any calculus, you
instinctivelychoosethequickestroute(showninthefigure)andsavethechild. Ourpurpose
istoderivearelationbetweentheangleθ
1
yourpathmakeswiththeperpendiculartotheside
ofthepoolwhenyou’reonland,andtheangleθ
2
yourpathmakeswiththeperpendicular
whenyou’reinthewater. Todothis,letxbethedistancebetweentheclosestpointtoyou
atthesideofthepoolandthepointwhere youenterthewater. . Writethetotaltimeyou
run(onlandandinthewater)intermsofx(andalsotheconstantsa,b,c,v
1
,v
2
).Thenset
thederivativeequaltozero. Theresult,called“Snell’slaw”orthe“lawofrefraction,”also
governsthebendingoflightwhenitgoesintowater. 
..
..
..
..
..
..
..
...
..
...
...
..
...
....
...
....
.....
......
.........
........
θ
1
..
...
...
....
....
....
.....
.......
.............
...
θ
2
.
..
...
...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
...
..
...
...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
...
..
...
...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
...
..
...
...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
...
..
...
...
..
...
..
...
...
..
...
...
..
....
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
x
c−x
a
b
Figure6.7
Wadingpoolrescue.
Suppose we have two variables s x x and y (in most problemsthe letters s willbedifferent,
but for r nowlet’s s use x x and y) ) which h are e both h changing with time. . A A “related rates”
problemisaprobleminwhichweknowoneoftheratesofchangeatagiveninstant—say,
x˙ =dx/dt—andwe e want tofindthe other rate e ˙y=dy/dtatthatinstant. . (Theuse e of
Online Convert PDF to Text file. Best free online PDF txt
RasterEdge PDF document conversion SDK provides reliable and effective .NET solution for Visual C# developers to convert PDF document to editable & searchable
and paste pdf into powerpoint; pdf to ppt converter
6.2 RelatedRates
119
x˙ to o meandx/dt goesbacktoNewton andisstillused for thispurpose, , especiallyby
physicists.)
Ifyiswrittenintermsofx,i.e.,y=f(x),thenthisiseasytodousingthechainrule:
y˙=
dy
dt
=
dy
dx
·
dx
dt
=
dy
dx
x˙.
Thatis,findthederivativeoff(x),pluginthevalueofxattheinstantinquestion,and
multiplybythegivenvalueof ˙x=dx/dttoget ˙y=dy/dt.
EXAMPLE6.13
Supposeanobjectismovingalongapathdescribedbyy=x
2
,that
is,itismovingonaparabolicpath. Ataparticulartime,sayt=5,thexcoordinateis
6andwemeasurethespeedatwhichthexcoordinateoftheobjectischangingandfind
thatdx/dt=3. Atthesametime,howfastistheycoordinatechanging?
Usingthechainrule,dy/dt=2x·dx/dt.Att=5weknowthatx=6anddx/dt=3,
sody/dt=2·6·3=36.
Inmanycases,particularlyinterestingones,xandywillberelatedinsomeotherway,
for examplex=f(y),or F(x,y) =k,or perhapsF(x,y)=G(x,y), , where e F(x,y)and
G(x,y)areexpressionsinvolvingbothvariables. In n allcases, youcan solve the related
ratesproblemby taking g the derivative of both sides, , plugging g in all l the e known n values
(namely,x,y,andx˙),andthensolvingfory˙.
Tosummarize,herearethestepsindoingarelatedratesproblem:
1. Decidewhatthetwovariablesare.
2. Findanequationrelatingthem.
3. Taked/dtofbothsides.
4. Pluginallknownvaluesattheinstantinquestion.
5. Solvefortheunknownrate.
EXAMPLE 6.14
Aplaneisflyingdirectlyawayfromyouat500mphatanaltitude
of3miles. Howfastistheplane’sdistancefromyouincreasingatthemomentwhenthe
planeisflyingoverapointontheground4milesfromyou?
Toseewhat’sgoingon,wefirstdrawaschematicrepresentationofthesituation.
Becausetheplaneisinlevelflightdirectlyawayfromyou,therateatwhichxchanges
isthespeedoftheplane,dx/dt=500. Thedistancebetweenyouandtheplaneisy;it
isdy/dtthatwewishtoknow. BythePythagoreanTheoremweknowthatx
2
+9=y
2
.
Takingthederivative:
2xx˙=2yy˙.
120
Chapter6 Applications s oftheDerivative
..
...
...
...
..
.
...
....
...
..
.
...
...
...
...
...
...
...
...
.
...
...
...
...
.
..
...
...
...
..
.
...
....
...
..
.
...
...
...
...
...
...
...
...
.
...
...
...
...
.
..
...
...
..
−→
x
y
3
Figure 6.8
Recedingairplane.
Weareinterestedinthetimeatwhichx=4;atthistimeweknowthat4
2
+9=y
2
,so
y=5. Puttingtogetheralltheinformationwehaveweget
2(4)(500)=2(5)˙y.
Thus, ˙y=400mph.
EXAMPLE 6.15
Youareinflatingasphericalballoonattherateof7cm3/sec. How
fastisitsradiusincreasingwhentheradiusis4cm?
HerethevariablesaretheradiusrandthevolumeV. WeknowdV/dt,andwewant
dr/dt. ThetwovariablesarerelatedbymeansoftheequationV V =4πr3/3. Takingthe
derivative ofbothsidesgivesdV/dt=4πr
2
˙r. Wenowsubstitutethe e valuesweknowat
theinstantinquestion: 7=4π4
2
r˙,sor˙=7π/64cm/sec.
EXAMPLE 6.16
Water ispouredintoaconicalcontainerattherateof10cm3/sec.
Theconepointsdirectlydown,andithasaheightof30cmandabaseradiusof10cm.
Howfastisthewaterlevelrisingwhenthewateris4cmdeep(atitsdeepestpoint)?
Thewaterformsaconicalshapewithinthebigcone;itsheightandbaseradiusand
volumeareallincreasingaswaterispouredintothecontainer.Thismeansthatweactually
havethreethingsvaryingwithtime: thewaterlevelh(theheightoftheconeofwater),
theradiusrofthecirculartopsurfaceofwater(thebaseradiusoftheconeofwater),and
thevolumeofwaterV. ThevolumeofaconeisgivenbyV =πr
2
h/3. WeknowdV/dt,
andwe want dh/dt. . At t first something seemsto be wrong: : we e have athird variable r
whoseratewedon’tknow.
Butthedimensionsoftheconeofwatermusthavethesameproportionsasthoseof
thecontainer. Thatis,becauseofsimilartriangles,r/h=10/30sor=h/3. Nowwecan
eliminaterfromtheproblementirely:V =π(h/3)
2
h/3=πh
3
/27.Wetakethederivative
ofbothsidesandpluginh=4anddV/dt=10,obtaining10=(3π·4
2
/27)(dh/dt).Thus,
dh/dt=90/(16π)cm/sec.
6.2 RelatedRates
121
.
..
..
.
..
..
...
..
...
...
...
....
....
.....
......
......
........
..........
.................
...............................
.................
..........
........
.......
.....
.....
....
....
...
...
...
..
...
..
..
.
..
..
.
..
.
..
..
..
..
...
..
...
....
...
....
.....
.....
.......
.......
..........
..............
.........................................
..............
..........
.......
.......
.....
.....
....
....
...
...
...
..
..
..
..
..
.
..
.
.
.
..
..
...
...
...
.....
.......
...........
........................
...........
.......
.....
...
...
...
..
..
.
..
..
..
..
...
....
....
.......
.........
..............................
.........
.......
....
....
...
..
..
..
..
←−
10
−→
↑|
30
|
↑|
h
|↓
r
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
..
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
...................................
.....
...
..
..
.....
....
....
................................
.....
....
....
.....
.....
...
..
Figure6.9
Conicalwatertank.
EXAMPLE6.17
Aswingconsistsofaboardattheendofa10ftlongrope.Thinkof
theboardasapointP attheendoftherope,andletQbethepointofattachmentatthe
otherend.SupposethattheswingisdirectlybelowQattimet=0,andisbeingpushed
bysomeonewhowalksat6ft/secfromlefttoright.Find(a)howfasttheswingisrising
after1sec;(b)theangularspeedoftheropeindeg/secafter1sec.
Westartoutbyasking:Whatisthegeometricquantitywhoserateofchangeweknow,
andwhatisthegeometricquantitywhoserateofchangewe’rebeingaskedabout? Note
that the person pushing the swing ismoving horizontallyat a rate we know. . Inother
words, the e horizontal l coordinate e of P P isincreasing g at 6 ft/sec. . In n the e xy-plane let us
maketheconvenientchoiceofputtingtheoriginatthelocationofP attimet=0,i.e.,a
distance10directlybelowthepointofattachment. Thentherateweknowisdx/dt,and
inpart(a)theratewewantisdy/dt(therateatwhichP isrising). Inpart(b)therate
wewantis
˙
θ=dθ/dt,whereθstandsfortheangleinradiansthroughwhichtheswinghas
swungfromthe vertical. . (Actually,since e wewant ouranswer indeg/sec,atthe endwe
mustconvertdθ/dtfromrad/secbymultiplyingby180/π.)
(a) Fromthediagramweseethatwehavearighttriangle whoselegsare xand10−y,
andwhosehypotenuseis10. Hencex
2
+(10−y)
2
=100. Takingthederivativeofboth
sidesweobtain:2xx˙+2(10−y)(0−y˙)=0.Wenowlookatwhatweknowafter1second,
namelyx = 6 6 (because x x started d at t 0 0 and hasbeen increasing at the e rate e of 6 ft/sec
for 1sec),y=2(becauseweget 10−y=8fromthePythagoreantheoremappliedto
thetriangle withhypotenuse10andleg6),andx˙ ˙ =6. . Puttinginthesevaluesgivesus
2·6·6−2·8y˙=0,fromwhichwecaneasilysolvefor ˙y: y˙=4.5ft/sec.
122
Chapter6 Applications s oftheDerivative
...
..
...
...
...
..
...
...
...
...
...
...
...
...
....
...
...
....
...
....
....
....
....
....
....
....
.....
.....
.....
.....
......
......
......
........
........
..........
............
............................................................
.............
..........
........
.......
.......
......
......
.....
.....
.....
....
.....
....
....
....
....
...
....
....
...
...
....
...
...
...
...
....
..
...
...
...
...
...
..
...
...
..
............
.......
....
....
....
...
...
..
.
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
P
Q
x
y
θ
Figure 6.10
Swing.
(b) Here our r two variables are x x and θ, , so o we e want to o use e the e same right t triangle e as
inpart (a),butthistime relateθ θ tox. . Sincethe e hypotenuseisconstant(equalto10),
the best wayto do thisisto use the sine: : sinθ θ =x/10. . Taking g derivativeswe obtain
(cosθ)
˙
θ=0.1˙x.Attheinstantinquestion(t=1sec),whenwehavearighttrianglewith
sides6–8–10,cosθ=8/10andx˙=6. Thus(8/10)
˙
θ=6/10,i.e.,
˙
θ=6/8=3/4rad/sec,
orapproximately43deg/sec.
Wehaveseenthatsometimesthereareapparentlymorethantwovariablesthatchange
withtime, but t inrealitythere are just two, , astheotherscanbe e expressed in termsof
justtwo. Butsometimestherereallyareseveralvariablesthatchangewithtime;aslong
asyouknowtheratesofchangeofallbutoneofthemyoucanfindtherateofchangeof
theremainingone. Asinthecasewhentherearejusttwovariables,takethe e derivative
ofboth sidesofthe equationrelating allofthe variables,and thensubstitute allofthe
knownvaluesandsolvefortheunknownrate.
EXAMPLE 6.18
Aroadrunningnorthtosouthcrossesaroadgoingeasttowestat
thepointP. CarAisdrivingnorthalongthefirstroad,andcarBisdrivingeastalongthe
secondroad.AtaparticulartimecarAis10kilometerstothenorthofP andtravelingat
80km/hr,whilecarBis15kilometerstotheeastofP andtravelingat100km/hr. How
fastisthedistancebetweenthetwocarschanging?
Leta(t)bethedistanceofcarAnorthofPattimet,andb(t)thedistanceofcarBeast
ofP attimet,andletc(t)thedistancefromcarAtocarBattimet.BythePythagorean
Theorem,c(t)
2
=a(t)
2
+b(t)
2
.Takingderivativesweget2c(t)c
(t)=2a(t)a
(t)+2b(t)b
(t),
6.2 RelatedRates
123
..
...
...
...
..
..
...
...
....
.
..
...
....
...
.
...
...
...
...
.
...
...
...
...
.
...
...
....
...
...
....
...
...
.
...
...
...
...
.
...
...
...
...
.
...
....
...
..
(0,a(t))
(b(t),0)
c(t)
P
..
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
..
.
....
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
...................................
...
...
...
.
.....
....
..
...
.
Figure6.11
Carsmovingapart.
so
˙c=
a˙a+b
˙
b
c
=
a˙a+b
˙
b
a2+b2
.
Substitutingknownvaluesweget:
˙c=
10·80+15·100
102+152
=
460
13
≈127.6km/hr
atthetimeofinterest.
Noticehowthisproblemdiffersfromexample6.14.Inbothcaseswestartedwiththe
PythagoreanTheoremandtookderivativesonbothsides. However,inexample6.14one
ofthesideswasaconstant(thealtitudeoftheplane),andsothederivativeofthesquare
ofthatsideofthetrianglewassimplyzero. Inthisexample,ontheotherhand,allthree
sidesoftherighttrianglearevariables,eventhoughweareinterestedinaspecificvalue
ofeachsideofthetriangle(namely,whenthesideshave lengths10and15). . Makesure
thatyouunderstandatthestartoftheproblemwhatarethevariablesandwhatarethe
constants.
124
Chapter6 Applications s oftheDerivative
Exercises
1. Acylindricaltank k standingupright (withone circular base onthe ground) has radius 20
cm. Howfastdoes s thewaterlevelinthetankdropwhenthewateris beingdrainedat25
cm
3
/sec? 
2. A A cylindrical tank standing g upright t (with h one circular base on the ground) ) has s radius 1
meter.Howfastdoesthewaterlevelinthetankdropwhenthewaterisbeingdrainedat3
literspersecond? 
3. Aladder13meterslongrestsonhorizontalgroundandleans s againsta verticalwall. . The
footoftheladderispulledawayfromthewallattherateof0.6m/sec. Howfastisthetop
slidingdownthewallwhenthefootoftheladderis5mfromthewall? 
4. Aladder13meterslongrestsonhorizontalgroundandleans s againsta verticalwall. . The
topoftheladderisbeingpulledupthewallat0.1meterspersecond. Howfastisthefoot
oftheladderapproachingthewallwhenthefootoftheladderis5mfromthewall? 
5. Arotatingbeaconislocated2milesoutinthewater. . LetAbethepointontheshorethat
isclosesttothebeacon. Asthebeaconrotatesat10rev/min,thebeamoflightsweepsdown
theshoreonceeachtimeitrevolves.Assumethattheshoreisstraight.Howfastisthepoint
wherethebeamhitstheshoremovingataninstantwhenthebeamislightingupapoint2
milesalongtheshorefromthepointA?
6. Abaseballdiamondisasquare90ftonaside. . Aplayerrunsfromfirstbasetosecondbase
at 15ft/sec. . Atwhatrate e isthe player’sdistance fromthirdbasedecreasingwhensheis
halfwayfromfirsttosecondbase? 
7. Sandispouredontoasurfaceat15cm
3
/sec,formingaconicalpilewhosebasediameteris
alwaysequaltoitsaltitude. Howfastisthealtitudeofthepileincreasingwhenthepileis3
cmhigh? 
8. Aboatispulledintoadockbyaropewithoneendattachedtothefrontoftheboatand
theotherendpassing througharingattachedtothedockat apoint5 ft higherthanthe
frontoftheboat. Theropeisbeingpulledthroughtheringattherateof0.6ft/sec. How
fastistheboatapproachingthedockwhen13ftofropeareout? 
9. Aballoonisataheightof50meters,andisrisingattheconstantrateof5m/sec.Abicyclist
passesbeneathit,travelinginastraightlineattheconstantspeedof10m/sec.Howfastis
thedistancebetweenthebicylistandtheballoonincreasing2secondslater? 
10. Apyramid-shapedvathassquarecross-sectionandstandsonitstip. . Thedimensionsatthe
topare2m×2m,andthedepthis5m.Ifwaterisflowingintothevatat3m
3
/min,how
fast isthewaterlevelrisingwhenthedepthofwater(atthedeepestpoint) is4m? ? Note:
thevolumeofany“conical”shape(includingpyramids)is(1/3)(height)(areaofbase). 
11. The e sun n is s rising at the rate of 1/4 4 deg/min, , and d appears to o be climbing into o the e sky
perpendicular tothehorizon. . Howfastistheshadowofa200meterbuildingshrinkingat
themomentwhentheshadowis500meterslong? 
12. The e sun is s setting g at t the e rate of 1/4 deg/min, , and d appears to be e climbing g into the sky
perpendiculartothehorizon. Howfastistheshadowofa25meterwalllengtheningatthe
momentwhentheshadowis50meters?
13. Thetroughshowninfigure6.13isconstructedbyfasteningtogetherthreeslabsofwoodof
dimensions10ft×1ft,andthenattachingtheconstructiontoawoodenwallateachend.
6.2 RelatedRates
125
.
...
...
...
...
...
...
...
...
.
..
...
...
...
..
.
...
...
...
...
...
...
...
...
.
..
...
...
...
..
.
...
...
...
...
...
...
...
...
.
..
...
..
....
..
...
...
...
...
.
..
...
...
...
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
Figure6.12
Sunset.
The angleθ θ was s originally30
, but t because of poor construction n thesides s are collapsing.
Thetroughisfullofwater. Atwhatrate(inft
3
/sec)isthewaterspillingoutoverthetop
ofthetroughifthesideshaveeachfallentoanangleof45
,andarecollapsingattherate
of1
persecond?
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
..
..
.
..
..
..
.
..........................................................
.
..
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
.............................................................................................................
...
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.........
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
..............................................................................................................
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
.........
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.
..
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
.........
....
.....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.
θ
θ
1
1
1
10
......
...
......
...
...
...
..
....
.
.....
.
....
.
....
..
....
..
...
...
..
....
.
.....
.....
.
....
..
...
...
..
....
.
.....
.
....
.
....
..
....
..
...
...
..
....
.
.....
.....
.
......
...
...
..
....
..
....
.
....
.
.....
.
....
..
...
...
..
....
.
.....
.....
.
....
..
...
...
..
....
..
....
.
....
.
.....
.
....
..
...
...
..
....
.
.....
.
....
.
....
..
...
...
...
...
..
....
.
.....
.....
.
....
..
...
...
..
....
.
.....
.
...................................
.
..
..
.
..
..
.
.
.
..
.
..
..
.
..
.
.
..
.
..
..
.
.
.
..
..
.
.
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
.
.
..
..
.
.
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
.
Figure6.13
Trough.
14. Awoman5fttallwalksattherateof3.5ft/secawayfromastreetlightthatis12ftabove
the ground. . At t what rate is the tipofher shadow moving? ? At t what rateis her shadow
lengthening?
15. Aman1.8meterstallwalksattherateof1meterpersecondtowardastreetlightthatis4
metersabovetheground. Atwhatrateisthetipofhisshadowmoving?Atwhatrateishis
shadowshortening? 
16. Apolicehelicopterisflyingat150mphat t aconstant altitudeof0.5mile aboveastraight
road. Thepilot t usesradartodeterminethatanoncomingcarisatadistanceofexactly1
milefromthehelicopter,andthatthisdistanceisdecreasingat190mph.Findthespeedof
thecar. 
17. Apolicehelicopterisflyingat200kilometersperhourataconstantaltitudeof1kmabove
a straight road. . The e pilot uses radar to determine that anoncomingcar is at adistance
ofexactly2kilometersfromthehelicopter,andthatthisdistanceisdecreasingat250kph.
Findthespeedofthecar. 
18. Alightshinesfromthetopofapole20mhigh. Aballis s falling10metersfromthepole,
castingashadowonabuilding30metersaway.Whentheballis25metersfromtheground
itisfallingat6meterspersecond. Howfastisitsshadowmoving? 
126
Chapter6 Applications s oftheDerivative
..
....
...
...
...
...
....
..
.
...
..
.
....
.
..
...
.
..
....
...
...
...
...
.
...
..
.
....
.
..
...
.
..
....
Figure 6.14
Fallingball.
19. Doexample6.18assumingthattheanglebetweenthetworoadsis120
insteadof90
(that
is, the e “north–south” ” road actually goes ina somewhat t northwesterly y directionfrom m P).
Recallthelawofcosines: c
2
=a
2
+b
2
−2abcosθ.
20. Doexample6.18assumingthatcarAis300metersnorthofP,carBis400meterseastofP,
bothcarsaregoingatconstantspeedtowardP,andthetwocarswillcollidein10seconds.
21. Doexample 6.18assumingthat 8seconds ago carAstartedfromrest at P P and d has s been
picking upspeedat thesteady rateof5 m/sec
2
, and6 seconds s after car Astartedcar B
passedP movingeastatconstantspeed60m/sec. 
22. Referringagaintoexample6.18,supposethatinsteadofcarBanairplaneisflyingatspeed
200km/hrtotheeastofP atanaltitudeof2km,asdepictedinfigure6.15. Howfastisthe
distancebetweencarandairplanechanging?
.
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
.....
......
.......
......
.......
......
.......
......
.......
......
......
.......
......
.......
......
.......
......
.......
......
......
.......
......
.......
...
.
..
..
.
.
..
..
.
.
..
..
.
.
..
..
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
.
..
..
.
.
..
..
.
.
..
..
.
.
..
..
.
.
..
.
.
..
..
.
.
.
..
..
.
.
.
..
..
.
.
.
..
..
..
.
..
.
.
..
.
..
.
.
..
.
.
..
.
..
.
.
..
.
..
..
..
.
.
.
..
..
.
.
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
.
..
.
..
.
.
..
.
..
..
..
.
.
.
..
.
..
A
B
c(t)
....
...
....
...
...
....
...
....
....
...
..
..
..
.
..
.
...
.........
...
.
......
.......
......
.......
......
.............
....
..
...
...
..
...
..
.
.
Figure6.15
Carandairplane.
23. Referringagaintoexample6.18,supposethatinsteadofcarBanairplaneisflyingatspeed
200km/hrtotheeastofPatanaltitudeof2km,andthatitisgainingaltitudeat10km/hr.
Howfastisthedistancebetweencarandairplanechanging?
24. Alightshinesfromthetopofapole20mhigh. . Anobjectisdroppedfromthesameheight
fromapoint10maway,sothatitsheightattimetsecondsish(t)=20−9.8t
2
/2.Howfast
istheobject’sshadowmovingonthegroundonesecondlater? 
25. Thetwobladesofapairofscissorsarefastenedatthepoint t A. . Letadenotethedistance
fromAtothetipoftheblade(thepointB). Letβdenotetheangleatthetipoftheblade
thatisformedbytheline
ABandthebottomedgeoftheblade,line
BC,andletθdenote
theangle between
ABandthehorizontal. Supposethat t apieceofpaperis cut insucha
Documents you may be interested
Documents you may be interested