﻿

# mvc display pdf in partial view : Convert pdf into webpage software SDK dll winforms wpf windows web forms fluidsbook1-part1632

1.2. THEMATERIALDERIVATIVE
11
1.2.2 Theconvectiontheorem
SupposethatS
t
isaregionofﬂuidparticlesandletf(x,t)beascalarfunction.
Formingthevolumeintegralover S
t
, F =
S
t
fdV
x
,we seek tocompute
dF
dt
.
NowdV
x
=dx
1
···dx
N
=Det(J)da
1
···a
N
=Det(J)dV
a
. Thus
dF
dt
=
d
dt
S
0
f(x(a,t),t)Det(J)dV
a
=
S
0
Det(J)
d
dt
f(x(a,t),t)dV
a
+
S
0
f(x(a,t),t)
d
dt
Det(J)dV
a
=
S
0
Df
Dt
+fdiv(u)
Det(J)dV
a
,
andso
dF
dt
=
S
t
Df
Dt
+fdiv(u)
dV
x
.
(1.17)
Theresult (1.17) is calledthe convection n theorem. . We e cancontrast this
calculationwithoneoveraﬁxedﬁniteregionRofspacewithboundary∂R.In
thatcasetherateofchangeoffcontainedinRisjust
d
dt
R
fdV
x
=
R
∂f
∂t
dV
x
.
(1.18)
Thediﬀerencebetweenthetwocalculationsinvolvestheﬂuxoff throughthe
boundaryofthedomain. Indeedwecanwritetheconvectiontheorem m inthe
form
dF
dt
=
S
t
∂f
∂t
+div(fu)
dV
x
.
(1.19)
Usingthe divergence (or Gauss’) theorem, andconsidering theinstant when
S
t
=R,wehave
dF
dt
=
R
∂f
∂t
dV
x
+
∂R
fu·ndS
x
,
(1.20)
wherenistheouternormaltotheregionanddS
x
istheareaelementof∂R.The
secondtermontherightisﬂuxoffoutoftheregionR. Thustheconvection
theoremincorporatesintothechangeinf withinaregion,theﬂuxoffintoor
out oftheregion,duetothemotionof theboundaryof theregion. . Once e we
identifyf withausefulphysicalpropertyoftheﬂuid,theconvectiontheorem
willbeusefulforexpressingtheconservationofthisproperty,seechapter2.
1.2.3 Materialvectorﬁelds: : TheLiederivative
Certainvectorﬁeldsinﬂuidmechanics,andnotablythevorticityﬁeld,ω(x,t)=
∇×u,seechapter3,canincertaincasesbehaveasamaterialvectorﬁeld. To
understandtheconceptofamaterialvectoronemustimaginethedirectionof
thevectortobedeterminedbynearbymaterialpoints. Itiswrongtothinkof
amaterialvectorasattachedtoaﬂuidparticleandconstantthere. Thiswould
amounttoasimpletranslationofthevectoralongtheparticlepath.
Convert pdf into webpage - Convert PDF to html files in C#.net, ASP.NET MVC, WinForms, WPF application
How to Convert PDF to HTML Webpage with C# PDF Conversion SDK
how to convert pdf into html; add pdf to website
Convert pdf into webpage - VB.NET PDF Convert to HTML SDK: Convert PDF to html files in vb.net, ASP.NET MVC, WinForms, WPF application
PDF to HTML Webpage Converter SDK for VB.NET PDF to HTML Conversion
how to convert pdf into html code; convert pdf to html link
12
CHAPTER1. THEFLUIDCONTINUUM
Instead, we e want t the direction of the e vector to be that t of f a a diﬀerential
segmentconnectingtwonearby ﬂuidparticles,dl
i
=J
ij
da
j
. Furthermore,the
lengthof the materialvector r is s to o be proportionalto this s diﬀerentiallength
as timeevolvesandthe particles move. . Consequently, , once theparticles s are
selected,thefutureorientationandlengthofamaterialvectorwillbecompletely
determinedbytheJacobianmatrixoftheﬂow.
Thus we deﬁne amaterialvector ﬁeldas oneof the form (inLagrangian
variables)
v
i
(a,t)=J
ij
(a,t)V
j
(a)
(1.21)
Of course, giventhe e inversea(x,t) we can n express s v v as s afunction n of f x,t to
obtainitsEulerianstructure.
Wenowdeterminethetimerateofchangeofamaterialvectorﬁeldfollowing
theﬂuidparcel. Toobtainthiswediﬀerentiatev(a,t)withrespect t totimefor
ﬁxeda,anddeveloptheresultusingthechainrule:
∂v
i
∂t
a
=
∂J
ij
∂t
a
V
j
(a)=
∂u
i
∂a
j
V
j
=
∂u
i
∂x
k
∂x
k
∂a
j
V
j
=v
k
∂u
i
∂x
k
.
(1.22)
Introducingthematerialderivative,weseethatamaterialvectorﬁeldsatisﬁes
thefollowingequationinEulerianvariables:
Dv
Dt
=
∂v
∂t
x
+u·∇v−v·∇u≡v
t
+L
u
v=0
(1.23)
IndiﬀerentialgeometryL
u
iscalledtheLiederivativeofthevectorﬁeldvwith
respect tothevectorﬁeldu.
Thewaythisworkscanbeunderstoodbymovingneighboringpointalong
particlepaths.
Figure1.5:Computingthetimederivativeofamaterialvector.
Let v=
AB=∆xbeasmallmaterialvectorattimet,seeﬁgure1.5. At
time ∆tlater, the vector r has s become
CD. The e curved d lines s arethe particle
paths throughA,B ofthevector ﬁeldu(x,t). . SelectingA A asx, we see that
afterasmalltimeinterval∆tthepointCisA+u(x,t)∆tandDisthepoint
B+u(x+∆x,t)∆t. Consequently
CD−
AB
∆t
=u(x+∆x,t)−u(x,t).
(1.24)
C# Word - Convert Word to HTML in C#.NET
VB.NET How-to, VB.NET PDF, VB.NET Word it extremely easy for C# developers to convert and transform Internet by converting Word document file into HTML webpage.
best website to convert pdf to word; pdf to html converter
C# powerpoint - Convert PowerPoint to HTML in C#.NET
also makes PowerPoint document visible and searchable on the Internet by converting PowerPoint document file into HTML webpage. C#: Convert PowerPoint Document
how to change pdf to html; pdf to html
1.2. THEMATERIALDERIVATIVE
13
The left-handside of (1.24) is approximatelyDv/Dt, andright-handside is
approximatelyv·∇u, sointhe line∆x,∆t→ → 0 0 we get t (1.23). . A A material
vector ﬁeldhastheproperty thatits magnitudecanchangebythestretching
propertiesoftheunderlyingﬂow,anditsdirectioncanchangebytherotation
oftheﬂuidparcel.
ProblemSet1
1. Considertheﬂowinthe e (x,y) planegivenbyu= −y,v = x+t. . (a)
Whatis theinstantaneous streamlinethroughtheoriginatt=1?(b)whatis
thepathoftheﬂuidparticleinitiallyattheorigin,0<t<6π? (c)Whatisthe
streaklineemanatingformtheorigin,0<t<6π?
2. Considerthe“pointvortex”ﬂowintwodimensions,
(u,v)=UL(
−y
x2+y2
,
x
x2+y2
),x
2
+y
2
=0,
where U,L are reference valuesof speedandlength. . (a) ) Show w that t theLa-
grangiancoordinatesforthisﬂowmaybewritten
x(a,b,t)=R
0
cos(ωt+θ
0
), y(a,b,t)=R
0
sin(ωt+θ
0
)
whereR
2
0
=a
2
+b
2
0
=arctan(b/a),andω=UL/R
2
0
.(b)Consider,att=0a
smallrectangleofmarkedﬂuidparticlesdeterminedbythepointsA(L,0),B(L+
∆x,0),C(L+∆x,∆y),D(L,∆y).Ifthepointsmovewiththeﬂuid,oncepoint
Areturnstoitsinitialpositionwhatistheshapeofthemarkedregion? Since
(∆x,∆y) are small,youmayassumetheregionremains aparallelogram. . Do
this,ﬁrst,bycomputingtheentry∂y/∂aintheJacobian,evaluatedatA(L,0).
Thenverifyyourresultbyconsideringthe“lag”ofparticleBasitmovesona
slightlylargercircleataslightlyslowerspeed,relativetoparticleA,foratime
takenbyAtocompleteonerevolution.
3.Aswasnotedinclass,Lagrangiancoordinatescanuseanyuniquelabeling
ofﬂuidparticles. Toillustratethis,considertheLagrangiancoordinatesintwo
dimensions
x(a,b,t)=a+
1
k
e
kb
sink(a+ct), y=b−
1
k
e
kb
cosk(a+ct),
where k,careconstants. . Note e here a,barenotequalto(x,y) foranyt
0
By
examiningthedeterminantoftheJacobian,verifythatthisgivesauniquelabel-
ingofﬂuidparticlesprovidedthatb=0.Whatisthesituationifb=0?(These
waves,whichwere discoveredby Gerstner in1802, represent gravitywaves if
c
2
=g/kwhereg is theaccelerationofgravity. . They donothaveanysimple
Eulerianrepresentation. ThesewavesarediscussedinLamb’sbook.)
4. Inonedimension,theEulerianvelocityisgiventobeu(x,t)=2x/(1+t).
VB.NET PDF Convert to Tiff SDK: Convert PDF to tiff images in vb.
Able to convert PDF to Tiff in .NET WinForms application and ASP.NET webpage. Convert PDF file to Tiff and jpeg in ASPX webpage online.
convert pdf into html file; to html
Online Convert PDF to HTML5 files. Best free online PDF html
blue button or drag-and-drop your pdf file into the drop image solution, which is designed to help .NET developers convert PDF to HTML webpage using simple
export pdf to html; online pdf to html converter
14
CHAPTER1. THEFLUIDCONTINUUM
(a)FindtheLagrangiancoordinatex(a,t).(b)FindtheLagrangianvelocityas
afunctionofa,t. (c)FindtheJacobean∂x/∂a=Jasafunctionofa,t.
5.Forthestagnation-pointﬂowu=(u,v)=U/L(x,−y),showthataﬂuid
thelinex=L at timet=
L
U
log(UL/ψ)onthe streamlineUxy/L =ψ. . Do
this intwoways. . First, , consider r theline integralofu·
ds/(u
2
+v
2
)alonga
streamline. Second,useLagrangianvariables.
6. Let t S bethesurfaceofadeformablebodyinthree dimension,andlet
I =
S
fndS forsome scalar functionf,nbeingthe outwardnormal. . Show
that
d
dt
fndS=
S
∂f
∂t
ndS+
S
(u
b
·n)∇fdS.
(1.25)
(Hint: First t convert toavolumeintegral betweenS S andanouter r surface S
whichis ﬁxed. . Thendiﬀerentiate e andapplytheconvectiontheorem. . Finally
convertbacktoasurfaceintegral.)
VB.NET PDF insert image library: insert images into PDF in vb.net
Enable users to insert images to PDF file in ASPX webpage project. Import graphic picture, digital photo, signature and logo into PDF document.
convert pdf into webpage; convert from pdf to html
VB.NET PDF File Split Library: Split, seperate PDF into multiple
Split PDF file into two or multiple files in ASP.NET webpage online. Support to break a large PDF file into smaller files in .NET WinForms.
best pdf to html converter; how to convert pdf to html
Chapter2
Conservationofmassand
momentum
2.1 Conservationofmass
Everyﬂuidweconsiderisendowedwithanon-negativedensity,usuallydenoted
byρ,whichisintheEuleriansettingisascalarfunctionofx,t.Itsunitaremass
For airthe density is about 10
−3
grams per r cubic c centimeter, , but t ofcourse
pressure and temperature e aﬀect air density signiﬁcantly. . The e air ina room
of athousandcubic meters= 10
9
kilograms,ormorethanaton!
2.1.1 Eulerianform
q(x,t),ofdimensionsmassperunitvolumeperunittime.Theconservationof
massinaﬁxedregionRcanbeexpressedusing(1.20)withf=ρ:
d
dt
R
ρdV
x
=
R
∂ρ
∂t
dV
x
+
∂R
ρu·ndS
x
.
(2.1)
Now
d
dt
R
ρdV
x
=
R
qdV
x
(2.2)
andifwebringthesurfaceintegralin(2.1)backintothevolumeintegralusing
thedivergencetheoremwearriveat
R
∂ρ
∂t
+div(uρ)−q
dV
x
=0.
(2.3)
SinceourfunctionsarecontinuousandR is anarbitraryopensetinR
N
,the
integrandin(2.3)mustvanish,yieldingtheconservationof massequationin
15
VB.NET PDF Convert to Word SDK: Convert PDF to Word library in vb.
to Word in both .NET WinForms and ASP.NET webpage. In order to convert PDF document to Word file using VB you have to integrate following assemblies into your VB
change pdf to html format; convert fillable pdf to html
C# HTML5 PDF Viewer SDK to view, annotate, create and convert PDF
edit PDF document page in ASPX webpage, set and edit RasterEdge provide HTML5 PDF Viewer and Editor to help C# users to view, annotate, convert and edit
convert pdf to web pages; convert pdf form to html
16
CHAPTER2. CONSERVATIONOFMASSANDMOMENTUM
theEulerianform:
∂ρ
∂t
+div(uρ)=q.
(2.4)
Notethatthislastequationcanalsobewritten
Dt
+ρdivu=q.
(2.5)
Theconservationofmassequationineitheroftheseformsissometimescalled
(forobscurereasons)theequationofcontinuity.
Theform(2.5)showsthatthematerialderivativeofthedensitychangesin
twoways,eitherbysourcesandsinksofmassq>0orq<0respectively,orelse
bythenon-vanishingofthedivergenceofthevelocityﬁeld. Apositivevalueof
thedivergence,asforu=(x,y,z),isassociatedwithanexpansiveﬂow,thereby
reducinglocaldensity.Thiscanbeexaminedmorecloselyasfollows.LetV be
asmallvolumeofﬂuidwhere the densityisessentiallyconstant. . ThenρV V is
themasswithinthisﬂuidparcel,whichisamaterialinvariantD(ρV)/Dt=0.
ThusDρ/Dt+ρV
−1
DV/Dt=0.Comparingthiswith(2.5)wehave
divu=
1
V
DV
Dt
.
(2.6)
Example2.1: AswehaveseeninChapter1,anincompressibleﬂuidsatis-
ﬁesdivu=0.Forsuchaﬂuid,freeofsourcesorsinksofmass,wehave
Dt
=0,
(2.7)
that is,nowdensitybecomes amaterialproperty. . Thisdoes s notsay thatthe
density isconstanteverywhere inspace,onlythatisconstant at agivenﬂuid
parcel,as it movesabout . . (Notethat t weuseparcelheretosuggest thatwe
havetoaverageoverasmallvolumetocomputethedensity.) Howeveraﬂuidof
isimportant. Seawaterisessentiallyincompressiblebutdensitychangesdueto
salinityareanimportantpartofthedynamicsoftheoceans.
2.1.2 Lagrangianform
Ifq=0theLagrangianformoftheconservationofmassisverysimplebecause
ifwemovewiththeﬂuidthedensitychangesthatweseeareduetoexpansion
anddilationoftheﬂuidparcel,whichiscontrolledbyDet(J).Letaparcelhave
volumeV
0
initially,withessentiallyconstantinitialdensityρ
0
. Thenthemass
oftheparcelisρ
0
V
0
,andisamaterialinvariant. Atlatertimesthedensityis
ρandthevolumeisV
0
Det(J),soconservationofmassisexpressedby
DetJ(a,t)=
ρ
0
ρ
.
(2.8)
Ifq=0theLagrangianconservationofmassmustbewritten
∂t
a
ρDet(J)=Det(J)q(x(a,t),t).
(2.9)
2.1. CONSERVATIONOFMASS
17
ItiseasytogetfromEuleriantoLagrangianformusing(1.14).Assumingq=0,
Dt
+ρdivu=0=
Dt
DDet(J)/Dt
Det(J)
=
1
Det(J)
D
Dt
(ρDet(J))
(2.10)
andtheconnectioniscomplete.
Example 2.2: : Consider, , in one dimension, the unsteady y velocity y ﬁeld
u(x,t)=
2xt
1+t2
. Weassumenosources s ofsinks of mass, , andset t ρ(x,0)= = x.
Whatisthedensityﬁeldatlatertimes,inbothEulerianandLagrangianforms?
First note thatthis isareasonablequestion,sincewehaveaconservationof
mass equationto evolve e the density intime. . First t deriving the e Lagrangian
coordinates,wehave
dx
dt
=
2xt
1+t2
, x(0)=a.
(2.11)
Thesolutionisx=a(1+t
2
).TheJacobianisthenJ=1+t
2
.Theequationof
conservationofmassinLagrangianform,giventhatρ
0
(a)=a,isρ=a/(1+t
2
).
Sincea=x/(1+t
2
),the Eulerianformofthedensityisρ=x(1+t
2
)
2
. Itis
easytocheckthatthislastexpressionsatisﬁestheEulerianconservationofmass
equationinonedimensionρ
t
+(ρu)
x
=0.
Example 2.3Considerthetwo-dimensionalstagnation-pointﬂow(u,v)=
(x,−y) withinitialdensity ρ
0
(x,y) =x
2
+y
2
andq =0. . Theﬂowis s incom-
pressible,soρismaterial. InLagrangianform,ρ(a,b,t)=a
2
+b
2
. Toﬁndρ
asafunctionofx,y,t,wenotethattheLagrangiancoordinatesoftheﬂoware
(x,y)=(ae
t
,be
−t
),andso
ρ(x,y,t)=(xe
−t
)
2
+(ye
t
)
2
=x
2
e
−2t
+y
2
e
2t
.
(2.12)
Thelinesofconstant density,whichareinitiallycircles centeredattheorigin,
areﬂattenedintoellipsesbytheﬂow.
2.1.3 Anotherconvectionidentity
Frequently ﬂuidproperties s are e most conveniently thought of asdensities per
unitmassratherthanper unitvolume. . Iftheconservationsuchaquantity,f
say,istobeexamined,wewillneedtoconsiderρf toget“fperunitvolume”
andsobeabletocomputetotalamountbyintegrationoveravolume. Consider
then
d
dt
S
t
ρfdV
x
=
S
t
∂ρf
∂t
+div(ρfu)
dV
x
.
(2.13)
We now assume conservationof mass withq = = 0. . From m theproduct ruleof
diﬀerentiationwehavediv(ρfu)=fdiv(ρu)+ρu·∇f,andsotheintegrandsplits
intoapartwhichvanishesbyconservationofmass,andamaterialderivativeof
f timethedensity:
d
dt
S
t
ρfdV
x
=
S
t
ρ
Df
Dt
dV
x
.
(2.14)
Thustheeﬀectofthemultiplierρistoturnthederivativeoftheintegralinto
anintegralofamaterialderivative.
18
CHAPTER2. CONSERVATIONOFMASSANDMOMENTUM
2.2 Conservationofmomentuminanidealﬂuid
Themomentumofaﬂuidisdeﬁnedtobeρu,perunitvolume.Newton’ssecond
lawofmotionstates that momentumis conservedby amechanicalsystem of
massesifnoforcesactonthesystem. Wearethusinapositiontouse(2.14),
wherethe“sourcesandsinks”ofmomentumareforces.
If F(x,t)is the forceacting on n the e ﬂuid, per r unit t volume, thenwehave
immediately(assumingconservationofmasswithq=0),
ρ
Du
Dt
=F.
(2.15)
Sincewehaveseenthat
Du
Dt
istheﬂuidacceleration,(2.15)statesNewton’sLaw
thatmasstimesaccelerationequalsforce,inbothmagnitudeanddirection.
OfcoursetheLagrangianformof(2.15)isobtainedbyreplacingtheaccel-
erationbyitsLagrangiancounterpart:
ρ
2
x
∂t2
a
=F.
(2.16)
Themainissues involvedwithconservationofmomentumarethoseconnected
withtheforceswhichareonaparcelofﬂuid.Therearemanypossibleforcesto
consider:pressure,gravity,viscous,surfacetension,electromotive,etc. Eachhas
aphysicaloriginandamathematicalmodelwithasupportingsetofobservation
andanalysis. Inthepresent t chapter weconsider onlyanidealﬂuid. . Theonly
new ﬂuidvariablewewillneedtointroduceisthepressure,ascalar r function
p(x,t).
IngeneraltheforceFappearingin(2.15)isassumedtotaketheform
F
i
=f
i
+
∂σ
ij
∂x
j
.
(2.17)
Here f f is s abody force (exertedfrom the “outside”),andσis asecond-order
tensor calledthe e stresstensor. . Integrated d over r aregionR, , the force onthe
regionis
R
FdV
x
=
R
fdV
x
+
∂R
σ·ndS
x
,
(2.18)
usingthedivergencetheorem. Wecanthusseethattheeﬀectofthestresstensor
istoproduceaforceontheboundaryofanyﬂuidparcel,thecontributionfrom
anareaelement to o this s force beingσ
ij
n
j
dS
x
for anoutwardnormaln. . The
remainingbodyforcef willsometimesbetakentobe auniformgravitational
ﬁeldf = = ρg, , where g = = constant. . Onthesurface e of the earth h gravity y acts
towardtheEarth’scenterwithastrengthg≈980cm/sec
2
. Wealsointroduce
ageneralforcepotentialΦ,suchthatf=−ρ∇Φ.
2.2. CONSERVATIONOFMOMENTUMINANIDEALFLUID
19
2.2.1 Thepressure
Anidealﬂuidisdeﬁnedbyastresstensoroftheform
σ
ij
=−pδ
ij
=
−p
0
0
0
−p
0
0
0
−p
,
(2.19)
where δ
ij
= 1,i= j,= 0otherwise. . Thuswhenpressure e ispositivetheforce
onthesurfaceofaparcelisoppositetotheouternormal,asintuitionsuggests.
Notethatnow
divσ=−∇p.
(2.20)
Foracompressibleﬂuidthepressureaccountsphysicallyforthe resistance
tocompression.Butpressurepersistsasafundamentalsourceofsurfaceforces
foranincompressibleﬂuid,anditsphysicalmeaningintheincompressiblecase
issubtle.
1
ρ
Du
Dt
+∇p=0,
(2.21)
togetherwith
Dt
+ρdivu=0.
(2.22)
ThissystemofequationforanidealﬂuidarealsooftenreferredtoasEuler’s
equations. ThetermEulerﬂowisalsoinwideuse.
With Euler’s s system m we e have N+1 equations s for the N+2 unknowns
u
1
,...,u
N
,ρ,p.Anotherequationwillbeneededtocompletethesystem. One
possibilityistheincompressibleassumptiondivu=0. Acommonoptionisto
assumeconstantdensity.Thenρiseliminatedasanunknownandtheconserva-
tionofmassequationisreplacedbytheincompressibilitycondition. Forgases
themissingrelationisanequationofstate,whichbringsinthethermodynamic
propertiesoftheﬂuid.
The pressure force as s we e have deﬁned d it t above is isotropic, inthe sense
thepressure isthesameindependently oftheorientationof theareaelement
on whichit t acts. . A A simple two-dimensionaldiagram willillustrate why this
isso, see ﬁgure2.1. . Supposethatthepressure e isp
i
onthe faceoflengthL
i
.
Equatingforces,wehavep
1
L
1
cosθ=p
2
L
2
,p
1
L
1
sinθ=p
3
L
3
. ButL
1
cosθ=
L
2
,L
1
sinθ=L
3
,soweseethat p
1
=p
2
=p
3
. Soindeedthepressure e sensed
byafacedoesnotdependupontheorientationoftheface.
2.2.2 Lagrangianformofconservationofmomentum
TheLagrangianformoftheaccelerationhasbeennotedabove.Themomentum
equationofanidealﬂuidrequiresthatweexpress∇pasaLagrangianvariable.
1One aspect of the incompressiblecaseshouldbe noted here, namely that the pressure
is arbitraryup toanadditiveconstant. . Consequentlyit t is s onlypressure diﬀerences s which
matter. Thisisnotthecaseforacompressiblegas.