﻿

# mvc display pdf in partial view : Convert pdf to html link SDK control service wpf azure web page dnn fluidsbook10-part1633

6.2. SOMEEXAMPLESOFINCOMPRESSIBLEVISCOUSFLOW
101
6.2.3 Poiseuilleﬂow
Weconsidernowaﬂowinacylindricalgeometry.ANewtonianviscousﬂuidof
inﬁniteextentinbothdirections.Becauseofviscousstressesatthewallsofthe
z
,u
r
,u
θ
)=(u
z
(r),0,0)
the velocity y ﬁeldin cylindricalpolar coordinates. . We e note here, , for r future
reference,theformoftheNavier-Stokesequationsinthesecoordinates:
∂u
z
∂t
+u·∇u
z
+
1
ρ
∂p
∂z
=ν∇
2
u
z
,
(6.13)
∂u
r
∂t
+u·∇u
r
u
2
θ
r
+
1
ρ
∂p
∂r
Lu
r
2
r2
∂u
θ
∂θ
,
(6.14)
∂u
θ
∂t
+u·∇u
θ
+
u
r
u
θ
r
+
1
∂p
∂θ
Lu
θ
+
2
r2
∂u
r
∂θ
,
(6.15)
∂u
z
∂z
+
1
r
∂(ru
r
)
∂r
+
1
r
∂u
θ
∂θ
=0.
(6.16)
Here
u·∇=u
z
∂z
+u
r
∂r
+
u
θ
r
∂θ
,
(6.17)
2
=
2
(·)
∂z2
+
1
r
∂r
r
∂(·)
∂r
+
1
r2
2
(·)
∂θ2
, L=∇
2
1
r2
.
(6.18)
Fortheproblemathand,wesetp=−Gz+constanttoobtainthefollowing
equationforu
z
(r):
µ∇
2
u
z
=−G=µ
2
u
z
∂r2
+
1
r
∂u
z
∂r
.
(6.19)
Theno-slipconditionappliesatr=R,sotherelevantsolutionof(6.19)is
u
z
=
G
(R
2
−r
2
).
(6.20)
Thusthevelocityproﬁleisparabolic.Thetotalﬂuxdownthetubeis
Q≡2π
R
0
ru
z
dr=
πGR
4
.
(6.21)
IfatubeoflengthLissubjectedtoapressurediﬀerence∆patthetwoends,
thenwecanexpecttodriveatotalvolumeﬂoworﬂuxQ=
π∆pR
4
8µL
downthe
tube. TherateWatwhichworkisdonetoforcetheﬂuiddownatubeoflength
Listhepressurediﬀerencebetweentheendsofthetubetimesthevolumeﬂow
rateQ,i.e.
W=
πG
2
LR
4
(6.22)
Convert pdf to html link - Convert PDF to html files in C#.net, ASP.NET MVC, WinForms, WPF application
How to Convert PDF to HTML Webpage with C# PDF Conversion SDK
convert pdf to html form; convert pdf to html open source
Convert pdf to html link - VB.NET PDF Convert to HTML SDK: Convert PDF to html files in vb.net, ASP.NET MVC, WinForms, WPF application
PDF to HTML Webpage Converter SDK for VB.NET PDF to HTML Conversion
convert pdf to html; convert pdf to html5
102CHAPTER6. VISCOSITYANDTHENAVIER-STOKESEQUATIONS
Poiseuilleﬂowcanbeeasilyobservedinthelaboratory,particularlyintubesof
wayofdeterminingaﬂuid’sviscosity.Ofcoursealltubesareﬁnite,thevelocity
proﬁle (6.20) isnot establishedatonce whenﬂuidis introducedintoa tube.
Thisentryeﬀectcanpersistforsubstantialdistancesdownthetube,depending
onthe viscosity andthe tube radius, , andalso o onthevelocity proﬁleat t the
entrance. Anotherinterestingquestionconcerns s thestabilityofPoiseuilleﬂow
the1870’s. Heobservedinstabilityandtransitiontoturbulenceinlongtubes.
AnapplicationofPoiseuilleﬂowofsomeimportanceistobloodﬂow;andinthe
arterialsystemtherearemanybrancheswhicharetooshorttoescapesigniﬁcant
entryeﬀects.
AgeneralizationofPoiseuilleﬂowtoanarbitrarycylinder,boundedbygen-
erators parallelto o the z-axisandhavingacross s sectionS is easily obtained.
Theequationforu
z
isnow
2
u
z
=
2
u
z
∂x2
+
2
u
z
∂y2
=−G/µ, u
z
=0on∂S.
(6.23)
Thesolutionisnecessarily≥0forG>0andcanbefoundbystandardmethods
fortheinhomogeneousLaplaceequation.
6.2.4 Flowdownanincline
Weconsidernowtheﬂowofaviscousﬂuiddownanincline,seeﬁgure6.4. The
velocityhastheform(u,v,w)=(u(z),0,0)andthepressureisafunctionofz
alone. Theﬂuidisforceddowntheinclinebythegravitationalbodyforce. The
equationstobesatisﬁedare
ρgsinα+µ
d
2
u
dz2
=0,
dp
dz
+ρgcosα=0.
(6.24)
On the e free surface z z = = H H the e stress s must equal the e normalstress s due
to the constant t pressure, p
0
say, abovetheﬂuid. . Thus s σ
xz
= ν
du
dz
= 0and
σ
zz
= −p p = = −p
0
whenz = = H. . Sincetheno-slipconditionapplies, , wehave
u(0)=0. Therefore
u=
ρgsinα
z(2H−z), p=p
0
+ρg(H−z)cosα.
(6.25)
Thevolumeﬂowperunitlengthinthey-directionis
U
0
udz=
gH
3
sinα
.
(6.26)
C# PDF url edit Library: insert, remove PDF links in C#.net, ASP.
Empower to create clickable and active html links in .NET WinForms. Able to insert and delete PDF links. Able to embed link to specific PDF pages.
add pdf to website html; convert pdf to html online
VB.NET PDF url edit library: insert, remove PDF links in vb.net
Empower to create and insert clickable and active html links to PDF document. Able to embed link to specific PDF pages in VB.NET program.
convert pdf into html; convert fillable pdf to html form
6.2. SOMEEXAMPLESOFINCOMPRESSIBLEVISCOUSFLOW
103
H
z
α
g
x
Figure6.4:Flowofaviscousﬂuiddownanincline.
6.2.5 Flowwithcircularstreamlines
Weconsideravelocityﬁeldincylindricalpolarcoordinatesoftheform(u
z
,u
r
,u
θ
)=
(0,0,u
θ
(r,t)),withp=p(r,t).From(6.13)-(6.18)theequationforu
θ
is
∂u
θ
∂t
2
u
θ
∂r2
+
1
r
∂u
θ
∂r
u
θ
r2
,
(6.27)
withtheequation
∂r
∂r
=
ρ
r
u
2
θ
(6.28)
determiningthepressure. Thevorticityis
ω=
1
r
∂ru
θ
∂r
.
(6.29)
From(6.27)wethenﬁndanequationforthevorticity
∂ω
∂t
2
ω
∂r2
+
1
r
∂ω
∂r
=ν∇
2
ω.
(6.30)
Thisequation,whichisthesymmetricformoftheheat equationintwospace
dimensions,maybeusedtostudythedecayofapointvortexintwodimensions,
seeproblem6.2.
6.2.6 TheBurgersvortex
Thimplicationof(6.30)isthatvorticityconﬁnedtocircularstreamlinesintwo
dimensions willdiﬀuse likeheat, , never r reachinga a non-trivial steady state in
R
2
. WenowconsiderasolutionoftheNavier-Stokesequationswhichinvolves
Demo▶: Convert PDF to Word; Convert PDF to Tiff; Convert PDF to HTML; Convert PDF to Image; Tiff; Online Convert PDF to Html. SUPPORT:
convert from pdf to html; adding pdf to html
C# PDF Library SDK to view, edit, convert, process PDF file for C#
PDF Viewer provides C# users abilities to view, annotate, convert and create editing PDF document hyperlink (url) and quick navigation link in PDF bookmark.
convert pdf fillable form to html; convert pdf to url link
104CHAPTER6. VISCOSITYANDTHENAVIER-STOKESEQUATIONS
atwo-dimensionalvorticityﬁeldω=(ω
z
r
θ
))=(ω(r),0,0). Theideaisto
ﬁeldof theform(u
z
,u
r
,u
θ
)=(αz,−αr/2,0). Thus s thefullvelocityﬁeldhas
theform
(u
z
,u
r
,u
θ
)=(αz,−αr/2,u
θ
(r,t)).
(6.31)
Nowthez-componentofthevortiityequationis,with(6.31),
∂ω
∂t
αr
2
∂ω
∂r
−αω=ν
1
r
∂r
r
∂ω
∂r
, ω=
1
r
∂ru
θ
∂r
.
(6.32)
First note that if ν ν = = 0,so o that t there e is s nodiﬀusionofω, , we mysolvethe
equationtoobtain
ω=e
αt
F(r
2
e
αt
),
(6.33)
where F(r
2
) is the initialvalue of ω. . Thissolutionexhibitsthe e exponential
growthofvorticitycomingfromthestretchingofvortextubes inthestraining
ﬂow(αz,−αr/2,0).
towardthez-axis. Wehave
1
r
∂r
α
2
r
2
ω+νr
∂ω
∂r
=0.
(6.34)
Integratingandenforcingthecondition2thatr
2
ωandr
∂ω
∂r
vanishwhenr=∞,
wehave
α
2
rω+ν
dr
=0.
(6.35)
Thus
ω(r)=Ce
−αr
2
,
(6.36)
sothat
u
θ
=
Γ
1−e
−αr
2
r
,
(6.37)
where we have redeﬁned d the constant t to o exhibit t the total circulationof the
vortex. Notethatasν ν decreases s thesizeofthevortextubesshrinks. . WithΓ
ﬁxedthiswouldmeanthatthevorticityofthetubeisincreased.
6.2.7 Stagnation-pointﬂow
Inthis example we attempt to o modifythe two-dimensional stagnationpoint
ﬂowwithstreamfunctionUL
−1
xytoasolutioniny>0of theNavier-Stokes
equationswithconstantdensity,satisfyingtheno-slipconditionony=0. The
vorticitywillsatisfy
u
∂ω
∂x
+v
∂ω
∂y
−ν
2
ω
∂x2
+
2
ω
∂y2
=0.
(6.38)
VB.NET PDF Convert to Jpeg SDK: Convert PDF to JPEG images in vb.
to Word (.docx). Convert PDF to Tiff. Convert PDF to HTML. PDF to Text. Convert PDF to JPEG. Convert PDF to Png Image to PDF. Image: Remove Image from PDF Page. Image
convert pdf link to html; convert pdf to html file
How to C#: Basic SDK Concept of XDoc.PDF for .NET
C# programmers can convert Word, Excel, PowerPoint Tiff, Jpeg, Bmp of PDF document, including editing PDF url links and quick navigation link in bookmark
how to change pdf to html format; pdf to html
6.3. DYNAMICALSIMILARITY
105
0
0.5
1
1.5
2
2.5
3
0
0.2
0.4
0.6
0.8
1
1.2
eta
fprime
Figure6.5:f
versusηfortheviscousstagnatioinpointﬂow.
Ifwesetψ=UL
−1
xF(y),thenω=−UL
−1
yF

. Insertionin(6.38)gives
F
F

−FF

−Re
−1
F

,
(6.39)
where Re = UL/ν. . The e boundary conditionsare that F(0) = F
(0) = 0to
makeψ,u,vvanishonthewally=0,andF ∼yasy→∞,sothatweobtain
theirrotationalstagnationpointﬂowaty=∞.
Oneintegrationof(6.39)canbecarriedouttoobtain
F
2
−FF

−Re
−1
F

=1.
(6.40)
WithF=Re
−1/2
f(η),η=Re
1/2
y,(6.40)becomes
f
2
−ff

−f

=1,
(6.41)
withconditionsf
(∞)=1,f(0)=f
(0)=0.Weshowinﬁgure6.5thesolution
f
ofthicknessoforder
UL/nubetweenthenullvelocityontheboundary and
thevelocityU(x/L)whichuhasatthewallintheirrotationalstagnationpoint
7,wherewetakeupthestudyofboundarylayers.
6.3 Dynamicalsimilarity
Inthestagnationpointexamplejustconsidered, thedimensionalcombination
Re=UL/νhasoccurredasaparameter. Thisparameter,calledtheReynolds
VB.NET PDF Convert to Word SDK: Convert PDF to Word library in vb.
VB.NET PDF - Convert PDF to MS Office Word in VB.NET. VB.NET Tutorial for How to Convert PDF to Word (.docx) Document in VB.NET. Best
convert pdf to url online; how to convert pdf file to html document
C# PDF Convert to Jpeg SDK: Convert PDF to JPEG images in C#.net
C# PDF - Convert PDF to JPEG in C#.NET. C#.NET PDF to JPEG Converting & Conversion Control. Convert PDF to JPEG Using C#.NET. Add necessary references:
best website to convert pdf to word online; convert pdf to web pages
106CHAPTER6. VISCOSITYANDTHENAVIER-STOKESEQUATIONS
numberinhonorofOsborneReynolds, arose because wechosetoexhibitthe
withconstantdensityittheirdimensionalform:
∂u
∂t
+u·∇u+
1
ρ
∇p−ν∇
2
u=0, ∇·u=0.
(6.42)
Wemaydeﬁnedimensionless(starred)variablesasfollows:
u
=u/U,x
=x/L,p
=p/ρU
2
.
(6.43)
HereU,Lareassumedtobeavelocityandlengthcharacteristicoftheproblem
beingstudied.Inthecaseofﬂowpastabody,Lmightbeabodydiameterand
U theﬂowspeedatinﬁnity. Inthesestarredvariablesitiseasilycheckedthat
theequationsbecome
∂u
∂t
+u
·∇
u
+∇
p
1
Re
∗2
u
=0, ∇
·u
=0.
(6.44)
Thus Re survives asthe onlydimensionless parameter inthe equations. . For
a givenvalue of Re e a a givenproblem m willhave e asolutionor solutions which
arefullydeterminedbythevalueofRe.Nevertheless theset t ofsolutions is
fullydeterminedbyReandRe alone. . Thusweareabletomakeacorrespon-
dencebetweenvariousproblemshavingdiﬀerentUandLbutthesamevalueof
Re. Wecallthiscorrespondencedynamicalself-similarity.Twoﬂowswhichare
self-similarinthisrespectbecomeidenticalwhichexpressedinthestarred,di-
mensionlessvariables(6.43).Inasensethestatement“theviscosityνissmall”
conveysnodynamicalinformation,althoughtheintendedimplicationmightbe
thatRe1. IfLisalso“small”,thenitcouldwellbethatRe=1ore1.
Theonlymeaningfulwaytostate thataﬂuidis “almostinviscid”is through
theReynoldsnumber,Re1. Ifwewanttoconsiderﬂuidswhoseviscosityis
dominantcomparedtoinertialforces,weshouldrequireRe1.Theseremarks
underline theoft-repeateddeﬁnitionofRe as “the ratioofinertialtoviscous
forces”. Thisisbecause
ρu·∇u
µ∇2u
=Re
u·∇u
2
u
∼Re
(6.45)
sinceweregardallstarredvariablesasoforderunity.
inatwo-dimensionaluniformﬂowofspeedUmustsatisfyD=ρU
2
LF(Re)for
somefunctionF. Notethat t weareassumingherethat cylindersarefullyde-
orroughness,slightellipticity,etc. mustbeconsidered.
Problemset6
3It is not alwaysthe casethatwell-formulatedboundary-valueproblemsfor theNavier-
page79ofLandauanLifshitz.
6.3. DYNAMICALSIMILARITY
107
H
2L
θ
Q
θ
Figure6.6:BifurcatingPoiseuillﬂow.Assumeaparabolicproﬁleineachsection.
1. Considerthefollowingoptimzationproblem: : ANewtonianviscousﬂuid
1
,whichthen
2
,seetheﬁgure.AvolumeﬂowQ
isintroducedintotheuppertube,whichdividesintoﬂowsofequalﬂuxQ/2at
thebifurcation.Becauseofthematerialcompositionofthetubes,itisdesirable
thatthewallstress µdu/dr,evaluatedatthewall,bethesameinbothtubes.
IfLandHaregivenandﬁxed,whatistheangleθwhichminimizestherateof
workingrequiredtosustaintheﬂowQ?. Besuretoverifythatyouhaveatrue
minimum.
2. Look k for a solutionof f (6.30)of f the form ω ω = = t
−1
F(r/
t), satisfying
ω(∞,t)=0,2π
0
rω(r,t)dr=1,t>).Show,bycomputingu
θ
withu
θ
(∞,t)=
0,thatthisrepresentsthedecayofapointvortexofunitstrengthinavbiscous
ﬂuid,i.e.
lim
t→0+
u
θ
(r,t)=
1
2πr
,r>0.
(6.46)
3.ANavier-Stokesﬂuidhasconstantρ,µ,nobodyforces.Consideramotion
inaﬁxedboundeddomainV withno-slipconditiononitsrigidboundary.Show
that
dE/dt=−Φ,E=
V
ρ|u|
2
/2dV,Φ=µ
V
(∇×u)
2
dV.
Thisshowsthatforsuchaﬂuidkineticenergyisconvertedintoheatatarate
Φ(t). This s lastfunctionoftime givesthe netviscousdissipationfortheﬂuid
containedinV. (Hint: : ∇×(∇×u)=∇(∇·u)−∇
2
u. Also∇·(A×B)=
∇×A·B−∇×B·A.)
108CHAPTER6. VISCOSITYANDTHENAVIER-STOKESEQUATIONS
4. In n twodimensions, withstreamfunction ψ, where e (u,v) = = (ψ
y
,−ψ
x
),
showthattheincompressibleNavier-Stokesequationswithoutbody forces for
aﬂuidofconstantρ,µreduceto
∂t
2
ψ−
(∂(ψ,∇2ψ)
∂(x,y)
−ν∇
4
ψ=0.
Interms of ψ, , what aretheboundary conditions s ona a rigidboundary ifthe
no-slipconditionissatisﬁedthere?
5. Findthe e time-periodic2D ﬂowinachannel−H < y< H,ﬁlledwith
Bcos(ωt),whereA,B,ωareconstants.Thisisanoscillating2DPoiseuilleﬂow.
Youmayassumethatu(y,t)iseveninyandperiodicintwithperiod2π/ω.
6.verify(6.33).
7. Theplanez z = 0isrotating g about t the z-axis withanangularvelocity
Ω. ANewtonianviscousﬂuidofconstantdensityandviscosityoccupies s z>0
andtheﬂuidsatisﬁestheno-slipconditionontheplane,i.e. atz=0theﬂuid
rotateswiththeplane. Bycentrifugaleﬀectweexpecttheﬂuidneartheplane
theplane.
Stokesequationsoftheform
(u
z
,u
r
,u
θ
)=(f(z),rg(z),rh(z)).
(6.47)
Weassumethatthevelocitycomponentu
θ
vanishesasz→∞.Showthatthen
p
ρ
df
dz
1
2
f
2
+F,
(6.48)
whereF isafunctionofralone. Nowarguethat,ifh(∞)=0,i.e. norotation
atinﬁnity,thenF mustinfactbeaconstant. Fromtherandθcomponentof
themomentumequationtogetherwith∇·u=0,ﬁndequationsforf,g,hand
justifythefollowingconditions:
f=
df
dz
=0,h=Ω, z=0; ; f
,h→0, z→∞.
(6.49)
(Thesolutionoftheseequationsisdiscussedonpp. 75-76ofL&L L and290-92
ofBatchelor.)
Chapter7
Stokesﬂow
Wehaveseen insection6.3thatthedimensionlessform m of theNavier-Stokes
equations foraNewtonianviscousﬂuidofconstantdensity andconstantvis-
cosityis,nowdroppingthestars,
∂u
∂t
+u·∇u+∇p−
1
Re
2
u=0, ∇·u=0.
(7.1)
TheReynoldsnumberReistheonlydimensionlessparameter intheequa-
tionsofmotion.Inthepresent chapter weshallinvestigatetheﬂuiddynamics
resultingfromtheaprioriassumptionthattheReynoldsnumberisverysmall
comparedto unity,Re e  1. . Since e Re = UL/ν,thesmallness of Re canbe
achievedbyconsideringextremelysmalllengthscales,orbydealingwithavery
viscous liquid, or by y treating ﬂows of very small velocity, so-called d creeping
ﬂows.
ThechoiceRe1isanveryinterestingandimportantassumption,foritis
relevanttomanypracticalproblems,especiallyinaworldwheremanyproducts
of technology, , including those e manipulating g ﬂuids, , are shrinking g insize. . A
particularlyinterestingapplicationistotheswimmingofmicro-organisms. In
all of these areas we shall,withthis assumption, unveil a specialdynamical
regimewhichisusuallyreferredtoasStokesﬂow,inhonorofGeorgeStokes,
whoinitiatedinvestigationsintothisclassofﬂuidproblems. Weshallalsorefer
tothisgeneralareaofﬂuiddynamicsastheStokesianrealm,incontrasttothe
theoriesofinviscidﬂow,whichmightbetermedtheEulerianrealm.
WhataretheprinciplecharacteristicsoftheStokesianrealm? Since e Reis
indicativeoftheratioofinertialtoviscousforces,theassumptionofsmallRe
willmeanthat viscous forces dominatethedynamics. . Thatsuggests s that we
maybeabletodropentirelythetermDu/DtfromtheNavier-Stokesequations,
rendering the system linear. . Thiswillindeedbethe e case,withsomecaveats
discussedbelow.Thelinearityoftheproblemwillbeamajorsimpliﬁcation.
Lookingat(7.1)intheform
Re
∂u
∂t
+u·∇u+∇p
=∇
2
u, ∇·u=0,
(7.2)
109