Ya You, Gautham G. Vadakkepatt, & Amit M. Joshi
A Meta-Analysis of Electronic 
Word-of-Mouth Elasticity
The authors conduct a meta-analysis on the effect of electronic word of mouth on sales by examining 51 studies
(involving 339 volume and 271 valence elasticities) and primary data collected on product characteristics
(durability, trialability, and usage condition), industry characteristics (industry growth and competition), and platform
characteristics (expertise and trustworthiness). Their analysis reveals that electronic word-of-mouth volume
(valence) elasticity is .236 (.417). More importantly, the findings show that volume and valence elasticities are
higher for privately consumed, low-trialability products that operate in less competitive industries and whose
reviews are carried on independent review sites. Furthermore, volume elasticities are higher for durable goods and
for reviews on specialized review sites, whereas valence elasticities are greater for community-based sites.
Drawing on the results, they discuss several implications for managers and researchers and explain why valence
elasticities are often found to be insignificant. Finally, they propose numerous directions for future research in the
area on the basis of their findings.
Keywords: electronic word-of-mouth elasticity, social media, meta-analysis
Online Supplement: http://dx.doi.org/10.1509/jm.14.0169
Ya You is Assistant Professor of Marketing, School of Business, College of
Charleston (e-mail: youy@cofc.edu). Gautham G. Vadakkepatt is Assis-
tant Professor of Marketing, School of Business, George Mason Univer-
sity (e-mail: gvadakke@gmu.edu). Amit M. Joshi is Associate Professor of
Marketing, College of Business Administration, University of Central
Florida (e-mail: Amit.Joshi@ucf.edu). This article is based on the first
author’s dissertation, and she thanks members of her dissertation com-
mittee for their feedback. All authors contributed equally to this research.
Roland Rust served as area editor for this article.
© 2015, American Marketing Association
ISSN: 0022-2429 (print), 1547-7185 (electronic)
Journal of Marketing
Vol. 79 (March 2015), 19 –39
19
E
lectronic word of mouth (eWOM)—Internet-mediated
written communications between current or potential
consumers (also categorized as consumer–consumer
interactions by Yadav and Pavlou [2014])—has emerged to
play an important role in the consumer decision-making
process (Cheung and Lee 2012), with an increasing number of
consumers trusting these communications over traditional
media (Bickart and Schindler 2001; Goldsmith and Horowitz
2006). Not surprisingly, companies are allocating larger
portions of their marketing budgets to generate and manage
the eWOM process (Moorman 2014). This increased practi-
tioner emphasis on eWOM has resulted in a substantial
body of research focused on establishing a link between
eWOM and product sales (“eWOM elasticity” hereinafter).
Although these studies have advanced our understanding of
the effect of eWOM on sales, they also raise several ques-
tions. For example, why do we observe such high variances
in the reported elasticities (for reported elasticities in each
study, see Theme 1 in the Web Appendix) of the two key
metrics used to measure eWOM, volume and valence1? Why,
even when studies focus on the same empirical context, do
we observe conflicting findings with regard to these two key
metrics? For example, using data from the movie industry,
Liu (2006) and Duan, Gu, and Whinston (2008) find that
volume, not valence, of consumer reviews is significantly
associated with movie revenues, whereas Chintagunta,
Gopinath, and Venkataraman (2010) find that it is valence,
rather than volume, that drives box office performance. Are
all eWOM communications created equal (as most studies
assume), or do different platforms (such as blogs, forums,
and social networking sites) have varying effects?
To reconcile these issues, to synthesize the research in
this domain, and to guide future studies, we undertake a
meta-analytic review. More specifically, and as Figure 1
shows, we examine how (1) contextual factors of product,
industry, and platform characteristics; (2) strategic action
factors of a firm (e.g., advertising, pricing, distribution)2; (3)
data characteristics; (4) omitted variables; (5) model char-
acteristics; and (6) manuscript status (Albers, Mantrala, and
Sridhar 2010; Assmus, Farley, and Lehmann 1984; Sethura-
man, Tellis, and Briesch 2011) affect eWOM elasticities.
Although Floyd et al. (2014) provide a previous meta-
analysis on the impact of online reviews on sales, there are
several differences between our study and theirs that merit
discussion. First, Floyd et al. restrict their analysis to online
product reviews, whereas we consider several additional
sources of eWOM, such as blogs, forums, and social net-
1Volume refers to the total number of eWOM messages, and
valence refers to the tone or preference of comments (typically
expressed as positive/negative/neutral).
2We only include traditional strategic factors typically used in a
meta-analysis. We acknowledge an anonymous reviewer’s comment
that other strategic factors of a firm, such as its product line deci-
sions, can also influence elasticity. However, we cannot include
these factors in the analysis because our analysis is restricted by
the focus and data constraints of published research in this area.
Convert pdf to plain text online - application SDK utility:C# PDF Convert to Text SDK: Convert PDF to txt files in C#.net, ASP.NET MVC, WinForms, WPF application
C# PDF to Text (TXT) Converting Library to Convert PDF to Text
www.rasteredge.com
Convert pdf to plain text online - application SDK utility:VB.NET PDF Convert to Text SDK: Convert PDF to txt files in vb.net, ASP.NET MVC, WinForms, WPF application
VB.NET Guide and Sample Codes to Convert PDF to Text in .NET Project
www.rasteredge.com
20/ Journal of Marketing, March 2015
FIGURE 1
A Conceptual Framework of the Factors Influencing eWOM Effect
working sites. Consequently, our analysis is more compre-
hensive, covering 51 studies (with 610 total elasticities),
compared with Floyd et al.’s 26 studies and 412 elasticities.
More importantly, by considering different sources of
eWOM, our research provides a more nuanced understand-
ing of the effect of eWOM platforms on eWOM elasticity
because we analyze each platform on the basis of expertise,
sender motivation, and sender–recipient relationship. Sec-
ond, whereas Floyd et al. pool volume and valence elas-
ticities, we analyze each separately. This method enables us
to (1) avoid pooling bias, (2) identify unique drivers of vol-
ume and valence elasticities, and (3) address conflicts in
extant research that pertain to the impact of these dimen-
sions. Third, our research includes multiple new drivers of
eWOM elasticity, such as product trialability, industry
growth, competition, strategic marketing variables, and
numerous data variables that were not considered previ-
ously. Perhaps because of these differences, our research
overturns some of the findings in Floyd et al. and generates
several new results that provide a clearer understanding of
the area as well as richer inferences and directions for mar-
keting practice and science alike.
Our meta-analysis of 51 studies involving 339 volume
elasticities and 271 valence elasticities (for details on all the
studies, products, and platforms included in our analysis,
see Themes 1–3 in the Web Appendix) shows the average
eWOM volume elasticity to be .236 and the average
valence elasticity to be .417. In general, our results find
support for the impact of product, industry, and platform
characteristics on eWOM elasticities. When we consider
volume and valence elasticities independently, we find
many common drivers. For example, we find that privately
consumed, low-trialability products that operate in less
competitive industries and whose reviews are carried on
independent review sites have higher eWOM volume and
valence elasticities. Our analysis also reveals certain factors
that are significant for only one of the two metrics. For
example, we find that platform type (community-based
sites vs. blogs vs. online reviews) and failure to consider
distribution intensity significantly affect eWOM valence
elasticities but not volume elasticities. We also find that
data characteristics such as lagged dependent variable and
omission of volume/valence metrics in the models have
asymmetric effects on eWOM elasticities such that lagged
dependent variable and omission of valence (volume) met-
rics in volume (valence) models significantly affect eWOM
volume elasticities but not valence elasticities. By consider-
ing valence elasticities separately, we also find that negative
ratings (vs. mean rating), rather than positive ratings (vs.
mean rating), significantly affect eWOM valence elasticities.
Finally, our analysis reveals that interactions between
industry growth (product trialability) and valence measures
are significant and positive (negative), as is the interaction
between industry competition and negative valence measure.
These results also highlight our major contributions.
Although we provide a generalizable effect of the two key
application SDK utility:C# PDF insert text Library: insert text into PDF content in C#.net
a single text character and text string to PDF files using online source codes in C#.NET class program. Insert formatted text and plain text to PDF page using
www.rasteredge.com
application SDK utility:VB.NET PDF Password Library: add, remove, edit PDF file password
doc.Save(outputFilePath). VB: Add Password to Plain PDF File. Following are examples for adding password to a plain PDF file in Visual Basic programming.
www.rasteredge.com
A Meta-Analysis of Electronic Word-of-Mouth Elasticity/ 21
dimensions of eWOM and offer directions for future
research, our main contribution is that we resolve the incon-
sistent findings in previous research and explain hetero-
geneity in reported elasticities by shedding light on how the
contextual factors of product, industry, and platform charac-
teristics influence eWOM elasticity. In doing so, we iden-
tify the role of factors such as product trialability, platform
type, and industry competition, which were not covered in
Floyd et al.’s (2014) previous meta-analysis. Another con-
tribution of our analysis is our evidence that there are some
differences between drivers of volume and valence elas-
ticities that scientists and practitioners alike should con-
sider. By analyzing eWOM elasticities separately, we
arrived at the key finding that all levels of valence ratings
do not affect sales in the same manner. Specifically, we
observe that negative ratings have a more significant effect
on eWOM valence elasticity. Finally, from the perspective
of managers, we find that (1) eWOM elasticities are greater
than most other marketing-mix elasticities (with valence
elasticities being much larger), (2) managers need to
account for product- and industry-specific factors to under-
stand the impact of eWOM volume and valence, and (3) not
all eWOM platforms have the same effect.
The remainder of the article is organized as follows.
First, we develop hypotheses regarding several factors that
could influence eWOM elasticities. Next, we describe the
data collection approach and the model we use to test our
hypotheses. We then present and discuss the results of our
analysis, followed by a discussion of the academic and
managerial implications of our findings. We conclude by
identifying avenues for future research.
Theory and Hypotheses
Product uncertainty, defined as a consumer’s lack of infor-
mation about the available alternatives or fit of products
with user needs, is a key driver of the extent of information
searcha consumer undertakes (Maity, Dass, and Malhotra
2014; Moorthy, Ratchford, and Talukdar 1997; Urbany
1986; Urbany, Dickson, and Wilkie 1989). However, this
information search is constrained by the cost–benefit trade-
off associated with gathering and processing the informa-
tion: benefits include reduced product uncertainty, greater
fit to user needs, and potential price savings, whereas costs
include monetary costs, opportunity cost of time, and the
psychological and cognitive costs of gathering and process-
ing the information (e.g., frustration, information overload)
(Maity, Dass, and Malhotra 2014; Schmidt and Spreng 1996).
Consumer information search has been studied in-depth
in marketing research (e.g., Moorthy, Ratchford, and Taluk-
dar 1997; Srinivasan and Ratchford 1991; Urbany 1986;
Urbany, Dickson, and Wilkie 1989). We use this informa-
tion search literature to develop the conceptual framework
of our article for three main reasons. First, for eWOM to
affect sales, consumers must seek out this information3and
then trust its credibility enough to make decisions based on
it. Thus, like any other information source (e.g., traditional
advertising), eWOM is subject to the cost–benefit argument
in evaluating its usage by consumers and its ultimate effect
on sales. Second, prior research has shown that the extent of
information sought, the intensity of information search, and
the effect of this information on actual purchase behavior
can vary according to product characteristics, industry char-
acteristics, and platform characteristics such as credibility
of source and message (e.g., Beatty and Smith 1987; For-
man, Ghose, and Wiesenfeld 2008; Gu, Park, and Konana
2012; Moore and Lehmann 1980; Urbany 1986; Urbany,
Dickson, and Wilkie 1989). Thus, the information search
literature provides a rich set of contextual factors to under-
stand their effects on eWOM elasticity. Third, characteris-
tics of the Internet, such as the differing levels of anonymity
provided to transmitters of eWOM, enable us to include
platform factors that can capture both the enhanced value of
that information as well as the costs associated with gather-
ing and processing information online.
In the following subsections, we discuss how the con-
textual factors of product, industry, and platform character-
istics influence eWOM elasticity. For the entire set of
expected relationships, see Table 1.
Product Characteristics
As we have mentioned, perceived benefits of information
search such as reduced product uncertainty and lower prices
have a significant impact on search activity (e.g., Schmidt
and Spreng 1996; Srinivasan and Ratchford 1991). In this
subsection, we argue that the magnitude of these benefits
varies according to product characteristics of durability, tri-
alability, and usage situations. Because our explicit assump-
tion is that eWOM metrics affect sales only if consumers
first seek out the information, product characteristics influ-
ence eWOM elasticity through the extent of information
sought through various eWOM platforms.
Product durability (durable vs. nondurable). We expect
information search to be more beneficial for durable goods
than nondurable goods for two reasons. First, durable goods
(e.g., automobiles) are more complex and have longer inter-
purchase intervals than nondurable goods (e.g., movies)
(Farley and Lehmann 1977; Kim and Sullivan 1998; Sethu-
raman and Tellis 1991). These factors increase the product
uncertainty and perceived risk associated with durable goods,
which in turn increase the benefits of information search.
Consistent with this argument, Moorthy, Ratchford, and
Talukdar (1997) find that in the automotive context, the extent
of information search depends on relative brand uncertainty
(i.e., which brand among the many brands is the best fit) and
individual brand uncertainty (i.e., what each brand offers).
Second, and mainly because durable goods are more expen-
sive (Urbany 1986), information search for durable goods
can also result in larger potential price savings.
Electronic word of mouth is a good source of informa-
tion because it leverages the advantages of the Internet (i.e.,
asynchronous mode of communication, multiway commu-
nication, communication between potential strangers, and
3We are assuming goal-directed search. However, it is possible
that in some contexts, consumers could stumble on this eWOM
and then act on the information impulsively.
application SDK utility:VB.NET Create PDF from Text to convert txt files to PDF in vb.net
Able to convert plain text to various fonts, colors and sizes of text content in PDF. Free SDK component built in .NET framework. Online evaluation source code
www.rasteredge.com
application SDK utility:VB.NET PDF insert text library: insert text into PDF content in vb
Insert formatted text and plain text to PDF page. features, like delete and remove PDF text, add PDF text box and Access to online VB.NET class source codes.
www.rasteredge.com
22/ Journal of Marketing, March 2015
Expected Sign
Variable/Level
Volume Valence
Rationale
Product Characteristics
Product durability
•Durable
•Nondurable
(+)
(+)
The eWOM effect is greater for durables than for nondurables. Durable
products are characterized by large interpurchase intervals and high unit
cost; thus, consumers more actively seek information to reduce risk for
durable products.
Product trialability
•Low
•High
(+)
(+)
The eWOM effect is greater for products with low trialability than for those
with high trialability. For a product with low trialability, a peer consumer’s
product experience can serve as a quality signal, which lowers the 
perceived risk in the purchase decision-making process.
Observability of product 
consumption
•Private
•Public
(+)
(+)
The eWOM effect is greater for private products than for public products.
It is more difficult for consumers to infer product quality and fit for use by
learning through observation for products used privately, which thus 
motivates consumers to rely on eWOM information.
Industry Characteristics
Industry growth
(+)
(+)
The eWOM effect is greater for industries with greater growth. The lack of
stability of the alternatives available in a growth industry leads consumers
to rely more on eWOM.
Competition
(–)
(–)
The eWOM effect is greater for industry with fewer competitors. Increased
competition results in choice overload, which leads to satisficing behavior
and therefore lowers the effectiveness of eWOM.
Expertise of eWOM-hosted
platform
•Specialized review sites
•General review sites 
(+)
(+)
The eWOM from specialized review sites is more effective than that from
general review sites because it contains product information that is often
more specialized and detailed or considered to reflect the reviewer’s higher
level of expertise; thus, it is perceived as more credible to consumers.
Trustworthiness of 
eWOM-hosted platform
•Independent review sites
•Retailers’ sites
(+)
(+)
The eWOM from independent review sites is more effective than that from
retailers’ sites. Unlike retailers’ sites, independent review sites are not
subject to censoring concerns and are thus perceived as more unbiased
and trustful sources.
Trustworthiness of 
eWOM-hosted platform
•Community-based sites
•Blogs
•Online product review
sites
(+)
(+)
The eWOM from community-based sites is more effective than that from
blogs and online product review sites because eWOM that is generated
by platforms that encourage participants to reveal their true identity and
develop interconnected networks of relationships is more valuable to
recipients than eWOM that originates from platforms in which users’ 
identities are anonymous and relationships are not fostered.
Firm Action
Advertising
•Omitted
•Included
(+)
(+)
Increased advertising can stimulate product awareness and eWOM;
increased eWOM can also trigger product awareness and strengthen the
effect of advertising. In addition, more advertising signals a product of
high quality, which may induce high ratings. Because advertising is likely
to be positively related to eWOM volume/valence and sales, we expect
the omission of advertising to induce a positive bias in the eWOM volume/
valence elasticity.
Price
•Omitted
•Included
(+)
(+)
Price may stimulate eWOM (larger number of reviews and higher ratings)
because consumers may enjoy telling others about the low prices they
find or pay and are likely to provide positive reviews about the low price.
Because price is likely to be correlated negatively with eWOM volume/
valence and sales, we expect the omission of the price variable to bias
the eWOM volume/valence elasticity positively.
Distribution
•Omitted
•Included
(+)
(+)
A greater level of product distribution tends to generate herding behavior
among consumers, which leads to increased eWOM. In addition, products
that are anticipated to receive positive reviews are also widely distributed.
Because distribution is likely to be positively correlated to eWOM volume/
valence and sales, we expect the omission of distribution to bias the eWOM
volume/valence elasticity positively.
TABLE 1
Expected Relationships and Rationale
application SDK utility:C# PDF Password Library: add, remove, edit PDF file password in C#
Support to add password to PDF document online or in C#.NET WinForms for PDF file protection. C# Sample Code: Add Password to Plain PDF File in C#.NET.
www.rasteredge.com
application SDK utility:C# Create PDF from Text to convert txt files to PDF in C#.net, ASP
Viewer & Editors, C# ASP.NET Document Viewer, C# Online Dicom Viewer, C# Online Jpeg images Viewer, C# HTML Convert plain text to PDF text with multiple fonts
www.rasteredge.com
A Meta-Analysis of Electronic Word-of-Mouth Elasticity/ 23
Expected Sign
Variable/Level
Volume Valence
Rationale
Data Characteristics
Temporal interval of 
dependent variable
(sales)
•Daily
•Others
(+)
(+)
We expect that a finer level of temporal aggregation (e.g., daily instead of
weekly or monthly) of the dependent variable will positively affect the
eWOM volume and valence elasticities because when the dependent
variables (e.g., sales) are aggregated at a coarser level, finer fluctuations
may be lost.
eWOM volume measure
•Accumulative
•Single period
(–)
(–)
People tend to weigh recent information more heavily than previous
information. Indeed, consumers might not read all reviews because of 
the opportunity cost of time. Moreover, eWOM tends to fade away more
quickly than face-to-face WOM because there is less trust and fewer
social interactions in the virtual world. Thus, we expect that the sales
response to accumulative eWOM is less than that to single-period 
(e.g., current/previous time period) eWOM.
eWOM valence measure
•Positive ratings
•Negative ratings
•Average ratings
(–)
(–)
We expect the eWOM valence measure of extreme positive ratings (e.g.,
five stars in a 1–5-star rating scale)/extreme negative ratings (e.g., one
star in a 1–5-star rating scale) to negatively bias the valence elasticity
because of customer risk aversion.
eWOM valence value
(–)
We expect higher valence ratings to bias the eWOM valence elasticity
negatively. The lower the valence ratings, the poorer the product quality
perceived, and thus, the stronger effect they have on consumer’s decision
according to prospect theory.
Omitted Variables
Lagged dependent variable
•Omitted
•Included
(+)
(?)
We expect the omission of lagged sales to positively bias eWOM volume
elasticity because lagged sales are likely to be correlated positively with
current-period eWOM volume and sales. We have no prior expectations
for the effect on valence elasticities.
Valence/volume
•Omitted
•Included
(–)
(–)
Valence of ratings tends to trend downward as more reviews accumulate
because of self-selection bias. We expect the omission of valence (volume)
to bias the eWOM volume (valence) elasticity estimate negatively because
valence is likely to be negatively related to volume and positively related
to product sales.
Model Characteristics
Functional form
•Multiplicative
•Others
(?)
(?)
No prior expectations
Estimation method
•OLS
•Others
(?)
(?)
No prior expectations
Endogeneity
•Omitted
•Included
(–)
(–)
Consistent with previous studies (e.g., Bijmolt, Van Heerde, and Pieters
2005; Sethuraman, Tellis, and Briesch 2011), we expect the failure to
account for endogeneity to bias the eWOM volume and valence elasticities
negatively.
Heterogeneity
•Omitted
•Included
(?)
(?)
No prior expectations
Other Factors
Manuscript status
•Published
•Unpublished
(+)
(+)
We expect eWOM volume and valence elasticities in published articles to
be greater than those in unpublished articles.
TABLE 1
Continued
application SDK utility:C#: XDoc.HTML5 Viewer for .NET Online Help Manual
Enter the URL to view the online document. Click to OCR edited file (one for each) to plain text which can be copied Click to convert PDF document to Word (.docx
www.rasteredge.com
application SDK utility:C# Word: How to Extract Text from C# Word in .NET Project
Simple to convert a Visual C# MS Word doc Word text extractor preserves both the plain text as well powerful & profession imaging controls, PDF document, image
www.rasteredge.com
archiving ability) to provide reach, accessibility, and persis-
tence of messages that traditional WOM cannot achieve
(Cheung and Lee 2012). Moreover, these Internet platforms
make it easier to capture a range of diverse consumer per-
spectives and better allow consumers to gauge the fit of the
product with their own needs and preferences (Chen and
Xie 2008). Thus, it is not surprising that recent research on
consumer information search in the durable goods context
has shown that consumers are switching from offline to
online information search (Klein and Ford 2003; Morton,
Zettelmeyer, and Silva-Risso 2001; Ratchford, Talukdar,
and Lee 2007). In addition, research has shown that search-
ing on the Internet can result in lower prices for consumers
of durable goods (Morton, Zettelmeyer, and Silva-Risso
2001; Zettelmeyer, Morton, and Silva-Risso 2006). Because
of the greater benefits of information search for durable
goods, combined with the benefits of eWOM over tradi-
tional WOM, we hypothesize the following:
H
1
: Electronic word-of-mouth (a) volume elasticities and (b)
valence elasticities are greater for durable products than
for nondurable products.
24/ Journal of Marketing, March 2015
Product trialability (low vs. high). Product trial plays a
significant role in influencing consumer beliefs and pur-
chase intentions mostly because it provides a low-risk option
through which consumers can more accurately evaluate
product attributes and fit (Agarwal and Prasad 1997; Wright
and Lynch 1995). In other words, product trials affect sales
positively by minimizing product uncertainty (Bawa and
Shoemaker 2004). Because product trials provide con-
sumers a cost-effective way to reduce product uncertainty,
all else being equal, the benefits of information search for
such products are generally lower than for products with
low trialability. Therefore, we expect eWOM to have a
greater impact on sales for products that have low trialabil-
ity compared with products that can be easily tried before
being purchased. Formally,
H
2
: Electronic word-of-mouth (a) volume elasticities and (b)
valence elasticities are greater for products with low trial-
ability than for products with high trialability.
Observability of product consumption (private vs. pub-
lic). Public consumption of products can weaken the effect
of eWOM metrics on sales through three routes. First,
Expected Sign
Variable/Level
Volume Valence
Rationale
Interaction Effects
eWOM valence measure
(positive vs. average 
ratings) 
¥
Product 
trialability (low vs. high)
(–)
For low-trialability products, extreme positive or negative ratings may
have less influence on eWOM valence elasticities than average ratings
because average ratings can be perceived as the “true” quality of a 
product and are used to compare products that cannot be tried before
buying. In contrast, for high-trialability products, average ratings may be
less effective than extreme positive or negative ratings because consumers
may selectively pay attention to the reviews that completely confirm or
disconfirm their own opinions when eWOM serves as a complementary
source to make purchase decision for products easier to try.
eWOM valence measure
(negative vs. average
ratings) 
¥
Product 
trialability (low vs. high)
(–)
eWOM valence measure
(positive vs. average 
ratings) 
¥
Observability
of product consumption
(private vs. public)
(+)
For products consumed in a private setting, extreme positive or negative
ratings may have greater influence on eWOM valence elasticities than
average ratings because the product experience is more subjective,
which leads extreme positive or negative ratings to be perceived as 
credible in making purchase decisions. However, average ratings would
be more effective than extreme ratings for publicly consumed products
because when people buy those products, they tend to conform to 
opinions from the majority of the group (shown by average ratings).
eWOM valence measure
(negative vs. average
ratings) 
¥
Observability
of product consumption
(private vs. public)
(+)
eWOM valence measure
(positive vs. average 
ratings) 
¥
Industry growth
(+)
For an industry with a higher level of growth, extreme positive or 
negative ratings may have greater influence on eWOM valence 
elasticities than average ratings because in an environment of frequent
product changes, extreme ratings may be perceived as more informative
for consumer learning than average ratings.
eWOM valence measure
(negative vs. average
ratings) 
¥
Industry growth
(+)
eWOM valence measure
(positive vs. average 
ratings) 
¥
Competition
(+)
For an industry with increasing competition, extreme positive or negative
ratings may have greater influence on eWOM valence elasticities than
average ratings because when consumers face several competing 
products that are difficult to differentiate from one another, extreme 
ratings are likely to be more diagnostic and helpful for consumers to
make purchase decisions than average ratings.
eWOM valence measure
(negative vs. average
ratings) 
¥
Competition
(+)
TABLE 1
Continued
observing a product in use provides potential consumers with
an alternative route to gather information about the product,
which in turn reduces the benefits of information obtained
through eWOM. Second, observability of product con-
sumption could result in mimicking behavior. Often called
observational learning or social learning (Bikhchandani,
Hirshleifer, and Welch 1992; Chen, Wang, and Xie 2011), this
mimicking behavior could arise because consumers perceive
other users’ final choice as more reliable information than
their own private information (Chen, Wang, and Xie 2011;
Dholakia, Basuroy, and Soltysinski 2002). This mimicking
behavior, driven by observability of other users’ product
consumption, can detract from the benefits of information
search and therefore weaken eWOM elasticity. Third, prod-
ucts help people not only create self-identities (e.g., Belk
1988; Berger and Heath 2007; Escalas and Bettman 2003) but
also infer identities of others (e.g., Belk, Bahn, and Mayer
1982). Thus, products are both extensions of self-identity
and part of a person’s social identity (Kleine, Kleine, and
Kernan 1993). If consumers see a product being used, they
may buy the product to conform with others under certain
conditions (Schmidt and Spreng 1996), which again reduces
the benefits of information obtained through eWOM.
However, products that are privately consumed provide
potential consumers with very limited opportunity to learn
through observation. For these products, eWOM can have a
significant impact on sales by making information from pri-
vate consumption more readily available, therefore enabling
consumers to evaluate whether the product matches their
own preferences. Thus, we hypothesize the following:
H
3
: Electronic word-of-mouth (a) volume elasticities and (b)
valence elasticities are greater for privately consumed
products than for publicly consumed products.
The relationship between product observability and
eWOM elasticity need not be as clear-cut. This is because it
is also possible that consumers engage in more detailed
information search for publicly consumed products because of
the increased salience of these products in the construction of
their self and social identities. According to this argument,
publicly consumed goods may benefit from information
search, which in turn has implications for eWOM elasticity.
Industry Characteristics
The number of alternatives available in the marketplace and
the stability of these alternatives are important determinants
of the extent of information search a consumer undertakes
(Beatty and Smith 1987; Moore and Lehmann 1980). In our
framework, we consider industry competition as a direct
proxy for the number of alternatives in the marketplace,
whereas industry growth proxies the stability of the alterna-
tives in the marketplace. We use industry growth to proxy
for stability of available alternatives because fast-growth
industries are associated with changing technologies, evolv-
ing product attributes, and new product introductions,
whereas slow-growth industries are associated with stability
in products and available alternatives (Klepper 1996; Utter-
back and Suarez 1993). We expand on these arguments in
the following subsections.
A Meta-Analysis of Electronic Word-of-Mouth Elasticity/ 25
Growth. Prior research on industry evolution has pro-
vided evidence that growth industries are industries in
which (1) the underlying technology is still evolving (Utter-
back and Suarez 1993) and (2) product innovation, rather
than process innovation, is the industry norm (Klepper
1996). These characteristics of growth industries directly
correlate with the lack of stability of the alternatives avail-
able in a growth industry. Under such market conditions,
consumers are less likely to rely on prior knowledge and
more likely to rely on externally retrieved information
(Hulland and Kleinmuntz 1994; Punj and Staelin 1983).
Moreover, the benefits of information search are greater in
these contexts. Because eWOM is ubiquitous and is a more
credible source of external information (compared with
marketing communications) for learning about usage situa-
tions and experiences (Bickart and Schindler 2001; Gold-
smith and Horowitz 2006), we expect eWOM elasticity to
be greater in fast-growth industries.
H
4
: Electronic word-of-mouth (a) volume elasticities and (b)
valence elasticities are greater for industries with higher
growth.
However, the relationship might not be as clear-cut as
articulated in H
4
for two reasons. First, when the underlying
technology or product attributes are changing, the potential
for information overload through eWOM increases, which
might result in an opposite effect on eWOM elasticity. Sec-
ond, prior research has shown that the addition of a novel
product attribute may result in consumers evaluating the
new product poorly because of associated learning costs
(Mukherjee and Hoyer 2001), thus negatively affecting
sales or at least dampening the eWOM elasticity.
Competition. As the number of competitors in an indus-
try increases, so does the number of options available to a
consumer. Although this greater number of options can be
beneficial to consumers, it may also result in less informa-
tion search (Jacoby, Speller, and Kohn 1974; Maity, Dass,
and Malhotra 2014): consumers have limited information
processing capabilities, and when confronted with numer-
ous options, they may undertake a satisficing strategy
(Simon 1955). Relatedly, a greater number of options also
increases the cost of information search, mostly through the
heightened psychological and cognitive costs associated
with searching across and processing these options (Maity,
Dass, and Malhotra 2014; Schmidt and Spreng 1996). Con-
sistent with this information search cost reasoning, the choice
overload literature (e.g., Botti and Iyengar 2006; Chernev
2003; Iyengar and Lepper 2000) has shown that purchase
likelihood decreases in these contexts (e.g., Iyengar and
Lepper 2000), as does consumers’ confidence in these deci-
sions, especially if they have not articulated their prefer-
ences (e.g., Chernev 2003). This decreased confidence could
potentially result in consumers delaying their purchase deci-
sions. These arguments lead us to hypothesize the following:
H
5
: Electronic word-of-mouth (a) volume elasticities and (b)
valence elasticities are greater for industries with lower
competition.
Platform Characteristics
For consumers to rely on eWOM rather than other sources
of information, there must be some credibility associated
with the source of the recommendation. According to Kel-
man (1961), credibility is composed of two major dimen-
sions, expertise and trustworthiness, in which expertise is
defined as the perceived ability of an information source to
provide detailed information and trustworthiness is the per-
ceived information source’s motivation to make valid asser-
tions without bias (McGuire 1969). Next, we hypothesize
how these two dimensions of platform credibility affect
eWOM volume and valence elasticities.
Expertise of the eWOM-hosted platform (specialized vs.
general review sites). We operationalize expertise by distin-
guishing specialized review sites, which have a narrow
focus on a particular product category (e.g., Flixster.com
for movies, CarandDriver.comfor cars), and general review
sites, which elicit consumer reviews for a wide range of
products (e.g., Amazon.com, Epinions.com). Specialized
review sites, by their nature, host reviews by experts on that
particular product category, whereas generalist platforms
may attract more novice reviewers. As such, reviews on
specialized review sites have a greater discussion of product
attributes, while other consumer reviews may have more
information about individual consumer preferences and
experiences (Chen and Xie 2005, 2008). Because potential
consumers value reviewer expertise (Bansal and Voyer
2000) and because experts evaluate a product on a larger
number of attributes (Moorthy, Ratchford, and Talukdar
1997), specialized review sites probably provide more reli-
able and detailed information to consumers, which in turn
can reduce product uncertainty. Therefore, we expect spe-
cialized review sites to provide greater benefits to con-
sumers and have a greater effect on eWOM volume and
valence elasticities. Formally, we hypothesize the following:
H
6
: Electronic word-of-mouth (a) volume elasticities and (b)
valence elasticities estimated with reviews from special-
ized review sites are greater than those estimated with
reviews from general review sites.
Trustworthiness of the eWOM-hosted platform. Because
traditional WOM is propagated through in-person commu-
nication between relatives and friends, it is notably different
from eWOM in two ways. First, traditional WOM commu-
nication is typically not driven by profit motives. This is
one reason why a general consumer belief exists that infor-
mation received from other product users is more trustwor-
thy than company-sponsored communication (Goldsmith
and Horowitz 2006). Second, the effectiveness of tradi-
tional WOM is predicated on the familiarity between the
sender and recipient of the message to assess source credi-
bility and message quality (Brown and Reingen 1987).
However, with eWOM, both these factors are called into
question. Thus, we examine two factors that can influence
perceived trustworthiness of the eWOM communication:
(1) motivation for eWOM and (2) facilitating relationships
between the sender and the recipient of the message.
26/ Journal of Marketing, March 2015
Motivation for eWOM (independent review sites vs.
retailers’ sites). Prior research has hypothesized that WOM
is most effective when there is similarity between the
source and the recipient and when their incentives are
aligned (e.g., Brown and Reingen 1987). Because it is
impossible to infer actual motives, we operationalize this
variable by categorizing the type of platform that carries
eWOM. The platforms that host eWOM information can be
broadly categorized into independent review sites (e.g.,
Epinions.com) and retailers’ sites (e.g., Amazon.com). Pre-
vious literature has suggested that retailers may have an
incentive to manipulate consumer reviews on their sites to
generate more sales (Gu, Park, and Konana 2012). In con-
trast, independent review websites provide more objective
information and are not subject to censoring concerns.
Therefore, they are perceived as being more unbiased and
trustworthy sources and should have a greater influence on
consumer decisions (Senecal and Nantel 2004). Formally,
H
7
: Electronic word-of-mouth (a) volume elasticities (b) and
valence elasticities estimated with reviews on independent
review sites are greater than those estimated with reviews
on retailers’ sites.
Facilitating relationships between sender and recipient of
message (community-based sites vs. blogs vs. online product
review sites). Brown and Reingen (1987) show that WOM
is at its most influential if there is a strong relationship
between the sender and the recipient of the message. A key
characteristic of eWOM is that there need not exist any rela-
tionshipbetween the sender and recipient of the message to
the extent that several forms of eWOM are anonymous. This
would not be a problem if the platforms were structured to
facilitate assessments of message quality by allowing repeated
interactions (and therefore learning) between members of
the platform. However, platforms vary in this ability to foster
relationships between members. Specifically, community-
based sites (e.g., social networkingsites) thrive on repeated
interactions among members, who are also often known to
one another outside cyberspace, which leads to the develop-
ment of stronger links between them (Yadav et al. 2013). In
contrast, online product review sites, with mostly anony-
mous reviews, typically do not engender relationship build-
ing with the source of the eWOM. Blogs lie in the middle of
these anchor points: their success depends on building rela-
tionships with readers (who may still remain anonymous).
Blogs also facilitate repeated interactions by allowing read-
ers to post comments to the blog and allowing the blog
author to respond to these postings. We do not expect the
relationship-building abilities of blogs to be stronger than
those of community-based sites because (1) the frequency of
interaction on community-basedsites is greater than that of
blogs and (2) members in community-based sites are con-
nected to one another because they have been acquainted at
some point in time. It is perhaps for this reason that Ratch-
ford, Talukdar, and Lee (2007) find that even within the
world of online information search, consumers rely on dif-
ferent sources of information in varying ways.
In summary, we argue that a hierarchy of trustworthi-
ness exists among media carrying eWOM that depends on
the depth of relationship between participants. In line with
this notion, we posit that eWOM generated by platforms
that encourage participants to reveal their true identity and
develop interconnected networks of relationships is more
valuable to recipients than eWOM that originates on plat-
forms in which users’ identities are anonymous and rela-
tionships are not fostered (e.g., online product review sites).
Therefore, we hypothesize the following:
H
8
: Electronic word-of-mouth (a) volume elasticities and (b)
valence elasticities estimated with community-based sites
are greater than those estimated with blogs, which in turn
are greater than those estimated with online product
review sites.
Data and Methodology
To create our database, we conducted a thorough search for
studies that report eWOM volume and valence elasticity
estimates directly, or for which we could calculate elas-
ticities from regression coefficients using appropriate trans-
formations (for details, see Theme 4 in the Web Appendix).
The search procedure we adopted was as follows. First, we
conducted an issue-by-issue search of relevant publications
from major journals in marketing, management, and infor-
mation systems that typically publish studies pertaining to
WOM (specifically, Journal of Marketing, Journal of Mar-
keting Research, Marketing Science, Management Science,
Journal of the Academy of Marketing Science, Information
Systems Research, Decision Support Systems, MIS Quar-
terly, Electronic Commerce Research and Applications,
Journal of Interactive Marketing, Journal of Retailing,
International Journal of Research in Marketing, Journal of
Advertising, Journal of Advertising Research, and Marketing
Letters). Second, we used keyword searches (e.g., “electronic
WOM,” “online WOM,” “social media,” “online reviews”)
in several electronic databases such as ABI/ INFORM, Busi-
ness Source Premier, Science Direct, and Google Scholar to
identify articles that were pertinent to our study. Third, we
searched the Web for working papers (e.g., Social Science
Citation Index, Social Science Research Network, Marketing
Science Institute, key authors’ webpages). Fourth, we con-
ducted a search for dissertations in ProQuest Dissertation and
Theses database. Fifth, we reviewed the reference lists in all
of the previously obtained articles. Finally, we contacted key
authors in this field to request unpublished or working papers.
We included articles in the database using two criteria.
First, consistent with the scope of previous meta-analyses
of marketing instruments (e.g., Assmus, Farley, and
Lehmann 1984; Bijmolt, Van Heerde, and Pieters 2005;
Sethuraman, Tellis, and Briesch 2011), we restricted our
analysis to the elasticities estimated from econometric mod-
els. Thus, we exclude studies using experimental and judg-
mental data such as purchase intention or preferences. Sec-
ond, we only considered studies in which elasticities are
unambiguously reported or derivable from the estimated
coefficients in the regression. Specifically, among a total of
339 (271) volume (valence) elasticities, 265 (73) are
reported directly in original studies and 74 (198) are deriv-
able from the estimated coefficients in the regression at the
A Meta-Analysis of Electronic Word-of-Mouth Elasticity/ 27
variable means. We transformed coefficients into elasticities
using the formulas based on Gemmill, Costa-Font, and
McGuire (2007) (see Theme 4 in the Web Appendix). How-
ever, when we could not calculate the elasticities, we made
every effort to contact the authors to get the information
necessary to do so. Theme 1 in the Web Appendix lists not
only the studies included in our analysis but also the
eWOM volume and valence measures in each study, the
average volume and valence elasticities for each of these
articles, and whether the elasticities were given or had to be
obtained through a transformation.
Using our screening criteria, we identified 51 empirical
studies, providing 340 eWOM volume elasticities and 271
eWOM valence elasticities. We dropped one eWOM vol-
ume elasticity from the data set after conducting outlier
analysis.4Thus, our final research database consists of 339
eWOM volume elasticities and 271 valence elasticities
reported in 51 studies. The number of studies included com-
pares favorably with several other meta-analyses of differ-
ent elements of marketing mix, such as Assmus, Farley, and
Lehmann (1984; 16 studies of advertising elasticity) and
Tellis (1988; 42 studies of price elasticity). The minimum
and maximum number of eWOM volume (valence) elas-
ticities reported in a study is 1 (1) and 46 (36), respectively.
Table 2 shows the coding scheme used in our research.
Although the coding scheme for variables that are tradition-
ally included in meta-analyses is straightforward, we col-
lected primary data on several variables that were not avail-
able from the source articles themselves. Specifically, the
articles did not contain product characteristics, industry
characteristics, and platform characteristics, so we manu-
ally collected these data for each article or model (in cases
of articles with multiple product categories).
Following the coding method in Chandy and Tellis
(2000) and Srinivasan, Lilien, and Rangaswamy (2006), we
used two expert coders to independently code the product
and platform characteristics identified in our conceptual
framework. We used different measures of reliability, such as
Cohen’s kappa (= .85 [.9]) and Krippendorff’s alpha (= .85
[.95]), in addition to the intercoder agreement of .92 (.96)
for product (platform) characteristics to ensure a high level
of consistency between two independent coders; a third
researcher resolved the remaining disagreements. For
industry characteristics, we used the historical method to
collect data on industry growth and number of competitors
(for details, see Theme 5 in the Web Appendix). We
obtained other, more traditional influencing factors such as
firm actions, data characteristics, omitted variables, model
characteristics, and manuscript status directly from each of
the individual studies. Table 3 shows the summary statistics,
and Theme 6 in the Web Appendix provides correlations of
key factors in the eWOM volume and valence models.
Estimation Model and Procedure
Our analysis proceeds in two stages. First, we perform uni-
variate analyses to obtain estimates of the mean eWOM
4Specifically, cook’s d, dfits, and boxplotin STATA. Detailed
results are available upon request.
volume and valence elasticities. We also analyze the distri-
bution of eWOM volume and valence elasticities. Second,
we estimate the impact of the aforementioned factors on
eWOM volume and valence elasticities. In the context of
quantitative meta-analysis, data have a nested or hierarchi-
cal structure (i.e., subjects nested within studies; Denson
28/ Journal of Marketing, March 2015
and Seltzer 2011), making traditional regression analyses
such as ordinary least squares (OLS) inappropriate because
nested data structures may lead to heteroskedasticity in the
errors (Krasnikov and Jayachandran 2008). Thus, to account
for within-study error correlations between eWOM elas-
ticities, we perform the meta-analysis with hierarchical linear
Category Variable
Coding Scheme
Product Characteristics
Product durability
Base: Nondurable
Durable: 1 (vs. 0 for not)
Product trialability
Base: High
Low: 1 (vs. 0 for not)
Observability of product consumption
Base: Public
Private: 1 (vs. 0 for not)
Industry Characteristics
Industry growth
Continuous
Competition
Continuous
Platform Characteristics
Expertise of eWOM-hosted platform
Base: General review sites
Specialized review sites: 1 (vs. 0 for not)
Trustworthiness of eWOM-hosted platform (eWOM 
motivation)
Base: Retailers’ sites
Independent review sites: 1 (vs. 0 for not)
Trustworthiness of eWOM-hosted platform (facilitating 
relationships between sender and recipient of message)
Base: Online product review sites
Blogs: 1
Community-based sites: 2
Firm Action
Advertising
Omitted: 1 (vs. 0 for not)
Price
Omitted: 1 (vs. 0 for not)
Distribution
Omitted: 1 (vs. 0 for not)
Data Characteristics
Temporal interval of dependent variable
Base: Others
Daily: 1 (vs. 0 for not)
eWOM volume measure
Base: Single (e.g., current or previous) period
Accumulative: 1 (vs. 0 for not) 
eWOM valence 
measure
Base: Average ratings
Positive ratings: 1 (vs. 0 for not)
Negative ratings: 1 (vs. 0 for not)
eWOM valence value
Continuous
Omitted Variables
Lagged dependent variable
Omitted: 1 (vs. 0 for not)
Valence
Omitted: 1 (vs. 0 for not)
Volume
Omitted: 1 (vs. 0 for not)
Model Characteristics
Functional form
Base: Others
Multiplicative: 1 (vs. 0 for not)
Estimation method
Base: Others
OLS: 1 (vs. 0 for not)
Endogeneity
Not accounted for: 1 (vs. 0 for accounted for)
Heterogeneity
Not accounted for: 1 (vs. 0 for accounted for)
Other Factors
Manuscript status
Base: Unpublished 
Published: 1 (vs. 0 for not)
TABLE 2
Factors Included in the Meta-Analysis and Coding Scheme
Documents you may be interested
Documents you may be interested