OPUS-CollegeTimetableModule
DesignDocument
A.Cornelissen,M.J.Sprengers,B.Mader
1
RadboudUniversityNijmegen
Nijmegen,July6,2010
1
ContactInformation: oum@giphouse.nl
Change pdf to jpg image - Convert PDF to JPEG images in C#.net, ASP.NET MVC, WinForms, WPF project
How to convert PDF to JPEG using C#.NET PDF to JPEG conversion / converter library control SDK
change from pdf to jpg; convert multipage pdf to jpg
Change pdf to jpg image - VB.NET PDF Convert to Jpeg SDK: Convert PDF to JPEG images in vb.net, ASP.NET MVC, WinForms, WPF project
Online Tutorial for PDF to JPEG (JPG) Conversion in VB.NET Image Application
.net pdf to jpg; best way to convert pdf to jpg
Abstract
ThisdocumentwillprovideaneasytoimplementdesignforatimetablingmodulefortheOPUS-
College(furtherreferredtoas OPUS)universityadministrationsoftwaresystem,specically tai-
lored tothe needs andconstraints s of the Copperbelt University (CBU) in n Kitwe, Zambia. . An
overview ofthesystemmoduleisgiven,includingdescriptions,use-cases,class models,database
models,activitydiagrams,andinmoredetailanelaborationontheinnerworkingsofthealgorithm
behindtimetabling. Itisourintentionthatthiswillleadtoakick-startforadevelopmentteam
responsiblefortheactualprogrammingofthismodule.
Keywords:timetable,memeticalgorithm,scheduling,naturalevolution,CBU,OPUS.
Online Convert Jpeg to PDF file. Best free online export Jpg image
try out some settings and then create the PDF files with the button at the bottom. The perfect conversion tool. JPG is the most widely used image format, but we
convert pdf page to jpg; advanced pdf to jpg converter
Online Convert PDF to Jpeg images. Best free online PDF JPEG
JPG is the most common image format on the internet. The outputs of our conversion service are always JPG files to even if pictures are saved in a PDF in other
change pdf to jpg file; .pdf to .jpg online
1 Introduction
Thegoalofthisdocumentistoactasablueprintfortheimplementationofatimetablingmodule
for the OPUS S university y administration n software system, , specically y tailored d to the needs and
constraintsoftheCopperbeltUniversity(CBU)inKitwe/Zambia.
This document willprovide aneasytoimplement designfor atimetablingmodule,together
with an in-depth view at t the e current t situation n at the Copperbelt University (CBU) and their
requirements,sothattheimplementationofthismodulecancommenceasquicklyandaserrorfree
aspossible.
WestartbygivinganoverviewofwhattheOPUSTimetablingmoduleshoulddo(basicfunc-
tionality)inSection2.Todesignthismoduleitisimportanttoconsiderwhatthecurrentsituation
is,whatassumptionswecanmake,whatdependenciesareinplace,andwhattheconstraintsfor
thetimetablemodule are ingeneralandfor the specic situationat CBU.This is describedin
Section3.Inthisdocumentwealsodescribeablueprintfortheimplementation.Theimplementa-
tionincludesachoiceforanalgorithm(Memetic)andtherationaleforthischoiceisdescribedin
Section4. Generaldesigninformationintheformofuse-cases,classdiagrams,activitydiagrams
anddatabasemodels is giveninSection5whichdescribes thearchitecture ofthe module. . It t is
explainedinmoredetailedinSection6.
2 SystemOverview
Thisdocumentcontains thedesignofamodulefortheOPUSuniversityadministrationsystem.
Thismoduleoerstheautomaticgenerationofatimetableforeducationalinstitutions. Thedesign
isbasedonrequirementsgatheredattheCopperbeltUniversityKitwe(Zambia)inApril/May2010.
2.1 Basicfunctionalities
ThemodulefortheOPUSsystemthatthisdocumentspecieshasonemainpurpose;thegeneration
of a a complete e timetable for a whole e academic term/year r for a university/school. . This s module
(especiallythetimetable generationalgorithm) istailoredspecicallytotherequirements ofthe
CopperbeltUniversitybutitshouldbeeasytocustomizeittottheneedsofotherhigherlearning
institutions.
Thewayitissupposedtoworkisasfollows:
Everyschool/departmentselectsthesubjectstheywanttogivethisyear/termandthestartand
end time e of their work day. . Additional l information n about t the subjects is retrieved from the
database, such as s study load, , assigned teacher, number of students and so on. . Only y after ev-
ery school/department has speciedtheirdesiredsubjects, , the moduleretrievestheinformation
about allthe roomsof the university,suchas capacity,facilities (PCs,Blackboard,...),location
andsoon. Afterallnecessaryinformationhasbeenretrieved,themodulewillgenerateatimetable
1
C# Image Convert: How to Convert Adobe PDF to Jpeg, Png, Bmp, &
C# sample code for PDF to jpg image conversion. This demo code convert PDF file all pages to jpg images. C# sample code for PDF to jpg image conversion.
bulk pdf to jpg; convert pdf photo to jpg
C# Image Convert: How to Convert Tiff Image to Jpeg, Png, Bmp, &
RasterEdge.XDoc.PDF.dll. C:\input.tif"; String outputDirectory = @"C:\output\"; // Convert tiff to jpg and show How to change Tiff image to Bmp image in your C#
batch convert pdf to jpg online; conversion of pdf to jpg
thattakesintoaccountallthepredeterminedconstraintsandpreferences. Thealgorithmusedto
generatethetimetabletriestogeneratethebestpossibletimetablewhichsatisesallconstraints
andasmanypreferencesaspossible.
Thegeneratedtimetableshouldttherequirementsoftheuniversitybutifitdoesnnot,there
shouldbethepossibilitytorepeatthegenerationprocess untilasatisfactorytimetablehasbeen
generated.
3 DesignConsiderations
WhendesigningandimplementingthetimetablemoduleforOPUStherearesomethingsthatneed
tobeknownbeforehand. Asthis s moduleismeanttobetailoredtothespecicrequirements of
CBU,informationaboutthecurrent timetablingsituationandorganizationalstructures maybe
required. Thesepointsarediscussedinthefollowingsubsections.
3.1 CurrentSituation
CurrentlyalltimetablingatCBUisdonemanuallywiththehelpofprogramslikeMicrosoftExcel
c
.Thefollowingsubsectionswillgiveyouanoverviewofhowthetimetablesarecurrentlygenerated
atCBUandhowtheacademicyearisorganized,aswellasadditionalinformationthatmightbe
usefulduringthedevelopmentofthetimetablingmodule.
3.1.1 TimetablingProcedure
AsthismoduleaimstoaddanautomatedtimetablingsolutiontotheOPUSsystem,andisspecif-
icallytailoredtotherequirementsoftheCopperbeltUniversityZambia,therststepistotakea
lookatthecurrentsituationatCBU.
TheCopperbeltUniversityconsistsofsevenschools(similartofacultiesatRadboudUniversity),
allofwhichhavetheirownfacilitiesandeachofwhichisresponsibleforgeneratingthetimetable
fortheir study programs themselves. . The e personresponsiblefor thetimetablingis the assistant
deanofeachschool. Atthebeginningoftheacademicyear/term,eachassistantdeancompilesa
timetableforhis schoolwithMicrosoftExceloranequivalentprogram. . Someschools s areinthe
situationthattheydonothaveenoughroomsforalltheirstudents,sotheyhaveto"borrow"rooms
fromotherschools.
Afterthetimetableshavebeengenerated,theassistantdeansmeetandcomparetheirtimeta-
bles. Mosttimesthere e willbeclashesconcerninglocationandtime. . This s is duetothe lack of
communicationandlackofrooms insomeschools. . Theseclashes s arethenresolvedbymanually
changingthetimetables.
Mostschoolshavethepreferencetousetheirownrooms,althoughthatmightnotalways be
2
C# Create PDF from images Library to convert Jpeg, png images to
Batch convert PDF documents from multiple image formats, including Jpg, Png, Bmp, Gif, Tiff, Bitmap, .NET Graphics, and REImage.
convert multi page pdf to jpg; convert pdf to jpg for online
VB.NET PDF Convert to Images SDK: Convert PDF to png, gif images
Convert PDF to Jpg, Png, Bmp, Gif, Tiff and Bitmap programming sample code to convert PDF file to Png image. Or directly change PDF to Gif image file in VB.NET
convert .pdf to .jpg; best convert pdf to jpg
possible.Thereareenoughroomsavailableoncampus,butduetothemanualrosteringprocedure
andthelack ofacentralizedplacetolook for freerooms,theavailable facilitiesare notusedas
ecientlyastheycouldbe.
There is frequent input from m students during and after the e rostering g process. . The e people
responsibleforthetimetablestrytoincorporatethewishesofthestudentsintothetimetable,but
thisisatediousprocess,mainlybecauseofthelackofacentralizedroommanagementsystem.
Onethingthathastobetakenintoaccountduringthetimetablingprocedureisthatthecampus
ofCBUisbig,thereforethetimeittakesthestudentstogetfromonebuildingtoanotherhasto
beconsideredwhengeneratingthetimetable.
Thecurrenttimetablingprocessverytimeconsuming. Themainreasonforthatseemstobe
thateachschoolwantstoretaincompletecontrolovertheirresources. Evenwithoutadedicated
IT supportedtimetablingsystem,thecurrentsituationcouldbegreatly improvedthroughmore
cooperationoftheschoolsduringthetimetablingprocedure.Shouldtheschoolswanttosharethe
controlovertheir resources,theremightbeless problemsduringtheadoptionofthetimetabling
module.
3.1.2 Organizational l Information
TheacademicyearatCBUissplitupin3terms,eachofwhichis10weekslong. Thelastweekof
eachtermisadedicatedtestperiod. Additionally,afterthelasttermthereisanexampreparation
periodwherenolecturestakeplace. Afterthepreparationperiodisovertheexamperiodstarts.
Inthisperiodastudentcanhaveupto2examsaday,oneat9:00andoneat14:00. Everyexam
isinwrittenform,andhastobesupervisedbyastamember. Pleasetakenote e thatateacher
maynotsupervisetheexamofhisownsubject,buthehastobepresentfortherst30minutes
toanswerpotentialquestions. Inordertoparticipateintheexamination,astudenthastoattend
80%ofthesubjectslectures.
Duringthe exam period it is very dicult to nd enough rooms s for all the e students/exam
groups. Thisisbecauseduringexams s thestudentshavetobespatially separated,andtherefore
thecapacityoftheroomsdecreases.Becauseallexamsareinwrittenform,dierentexamscanbe
heldinthesameroom,whichhelpstoremedytheproblemofdecreasingroomcapacity.
ThenormalworkinghoursatCBUarefrom8:00to17:00. Alllecturershavetobeavailable
forlecturesduringthistimeframebutarenotrequiredtobeoncampusthewholetime.
Asubjectisoftenpartofmorethanoneeducationalprogramandattendedbystudentsfrom
dierentschools. Althoughthesubject t is the samefor allstudents,its codeis dierentin n each
school.Thisisveryunusual,andshouldbechangedbeforetheroll-outoftheOPUSsystemstarts.
Studentswhofailasubjectareallowedtorepeatitthenextyeariftheyfulllcertainrequire-
ments.Butthisiscurrentlynotfactoredintothetimetable,thereforestudentsoftenhavetochoose
betweentakinglastyearsorthisyearssubjectiftheirlecturetimeoverlap.TheOPUStimetabling
modulehastobeabletoavoidthesecollisionsandgiveeverystudentthechancetotakepartin
3
C# TIFF: How to Use C#.NET Code to Compress TIFF Image File
C:\demo1.jpg", @"C:\demo2.jpg", @"C:\demo3.jpg" }; // Construct List<REImage> object. List<Bitmap> images = new List<Bitmap>(); / Step1: Load image to REImage
convert multiple page pdf to jpg; convert pdf to jpeg
C# PDF Image Extract Library: Select, copy, paste PDF images in C#
DotNetNuke), SharePoint. Get JPG, JPEG and other high quality image files from PDF document. Able to extract vector images from PDF. Extract
convert pdf to jpg for; batch pdf to jpg converter online
allrequiredsubjects.
3.1.3 NetworkInfrastructure
ThelocalnetworkatCBUconsistsofstateoftheartserverhardware. Thedierentbuildingsare
connectedbybre-opticalcablewhilenormalnetworkcablesconnectthecomputersinthebuilding
tothebackbone. TheCBUisalsoconnectedtothenetworkoftheUniversityofZambia(UNZA)
inLusakaviaabre-opticalconnection.
TheproblematicthingatCBUisthattheinternetaccessisverylimited. Forinstance: : when
wewereinZambia,theinternetconnectionfromCBUwasinferiortotheonewehadinthehotel.
Theproblemispartiallycausedby2longrangewirelessconnections. Therstoneconnectsthe
CBUtotheirInternetServiceProvider(ISP),andthesecondoneconnectstheISPtoitsinternet
accesspoint. Duetothese2longrangewirelessconnections,ahighpercentageofIPpacketsare
lostontheirwaytothedestination. Furthermore,thefactthatthepacketshavetopassthrough
alotofrouters,evenbeforetheyleaveAfrica,theirTimeToLive(TTL)isoftenexceededbefore
theyreachtheirdestination.Thisleadstothesepacketsbeingdiscarded,makingitevenharderto
accesssitesthatarenotlocatedneartoZambia.
3.2 AssumptionsandDependencies
AtimetablingmoduleforOPUShastosatisfycertainrequirements,providecertainfunctionalities
andconformtocertainrestrictions. Whattheserequirements,functionalitiesandrestrictionsare
willbeexplainedindetailinthefollowingsubsections.
3.2.1 GenericTimetablingRequirements
Ofcoursetherearesomebasicconstraintsthatarevalidforeverytimetablingsystem.Thefollowing
listshouldincludeallofthebasicconstraintsthathavetobeconsideredwhenimplementingthe
timetablingmodule.
RoomConstraints: Aroomcanonlybeoccupiedbyalimitednumberofpeople,thenumberof
peopleisdenedbythecapacityoftheroom. Aroomcanonlybeoccupiedbyonesubject
atatime.
TimeConstraints: Lecturescanonlybescheduledduringnormalworkinghours.
StaConstraints: Astamembercanonlybeinoneplaceatagiventime.
4
3.2.2 IndividualSchoolRequirements
Duringthegatheringoftherequirementsforthemoduleit becameclearthat individualschools
wanttoretaincontroloveralloftheirlecturesandadministration.Althoughallschoolshadmany
requirementsincommon,almosteveryschoolhadindividualwishes. Oftenthesewisheswereeven
saidtobestrictconstraintsratherthanoptionalpreferences.
Inthedesignofthemodule,especially theoneofthememeticalgorithmweuse,wedecided
not totakeintoaccountalloftheindividualrequirementsoftheschools. . Wedecidedthatfora
rst versionitwouldbesucienttosatisfy theglobalconstraints. . Thiskeeps s thedesignsimple
enoughforversion1.0.Implementationoftheindividualconstraintswouldleadtogreatlyincreased
complexitywhileatthesametimefailingtodeliversubstantialfunctionalimprovementsforalarge
partofthetargetgroup.
Allofthegatheredrequirements,globalandindividual,arecontainedinthisdocumenttomake
themavailableforlaterversionsofthemodule. GlobalrequirementscanbefoundinSection3.2.3
whiletheindividualrequirementsarelocatedintheAppendix7.1.Pleaserememberthatonlythe
globalrequirementsarecurrentlyrepresentedinthemodule’sdesignwhiletheindividualonesare
not.
3.2.3 GlobalRequirements
Thesearetheconstraintsandpreferencesthat arecommontoallschools ofCBU.Thedesignof
themodulecurrently onlytakestheserequirementsintoaccount. . Atrstlets s takealookatthe
constraints. Thesehavetobesatisedbythenaltimetable,theyarenot t optional!
Constraints:
Prerequisitesubjectshave tobeconsidered: : Somesubjectshaverequirementsregardingpre-
requisitesubjects. That t means thata student cannot register fora subjectif hehasnot
passedthe requiredsubjects. . Inthat t case,themodulemay not schedule thissubject into
thetimetableofthisindividualstudenteveniftheyareinthecurriculumforhis/hercurrent
term.
NosubjectsonFridayfornalyearstudents: Students s who are in n the nal year r of their
programhavetocompleteamandatoryprojectinordertoreceivetheirdiploma.Inorderto
givethemenoughtimetoworkontheirproject,theyarenotsupposedtohavelectureson
Fridays.
Only one‘dicult’examadayperstudent: : Someexams s areknowntohaveahighfailure
rate. Inordertoavoidputtingstudentsundertomuchstress,itisrequiredthatthegenerated
timetableonlycontainsonehardexamadayperstudent.
Maximumof2examsadayperstudent: Itisonlyallowedtoscheduleamaximumof2ex-
amsadayperstudent.
5
Lecturermaynotsupervisetheexam: Ateacher/lecturermay y notbethesupervisorof the
examofoneofhisownsubjects.Thereasonforthisistopreventcheating,aslecturersmight
beinterestedin having their r students score hightest results. . Nevertheless, , the lecturer r is
requiredtobepresentfortherst30minutesoftheexamsohecananswer anyquestions
thatmayarise.
Listed below are e requirements by the CBU U that t are not mandatory to o be e re ected d in the
timetable. However,the e generationalgorithmwilltry tosatisfy as manyof these preferencesas
possibleinthenaltimetable.
Preferences:
Only 1hardsubjectaday: : Somesubjectsareknowntobeharderthanothers,soonly1hard
subjectshouldbescheduledperstudentperday.
Examssupervisedbysta ofschool: : Examsupervisorsshouldbestamembersoftheschool
thatorganizesthesubject.
Roomexclusion: Itshouldbepossibletoexcluderoomsfromthetimetablingprocess,sothey
arenotconsideredbythegenerationalgorithm.
Timepreferencesforlecturers: Lecturers s shouldbeabletospecify preferredday or time of
teaching(morning/afternoon,evening)
Repeatingofsubjectsshouldnotresultinoverlaps: As s mentioned in Section 3.1.2, stu-
dentsareallowedtorepeatsubjectsthattheydidnotpassthersttime. Thisoftenresults
inoverlapswherestudentshavetochoosetoattendonesubjectortheother. Thisoverlaps
shouldbeavoidedifatallpossible.
3.3 GeneralConstraints
Apartfromthefunctionalrequirementsthathavetobesatisedbythetimetablingmodule,there
arealsootherthingstoconsiderbeforeandduringtheimplementationprocess. Certainproperties
of the local(African) infrastructure canseverelyimpact andrestrictthedesiredfunctionality of
themodule,thereforethemostimportantaspectsthathavetobeconsideredwillbeillustratedin
thefollowingSubsections.
3.3.1 ComputingResources
Timetable generation n using Memetic/Genetic c algorithms is no o trivial task. . Designing g a a good,
suitablealgorithmisatimeconsumingandcomplexprocess. Thesameistrueforthecalculation
oftheoptimaltimetablebythealgorithm.Thecalculationrequiresalotofresources,inregardto
thememoryaswellastheCPU.
6
DictatedbythearchitectureoftheOPUSsystem,thecalculationwilltakeplaceontheserver
andnotonaclientmachine.Likelytherewillnotbeadedicatedserverforthetimetablemodule,
thereforeasystemservingmanydierentserviceswillcalculatethetimetable.Thereforeitwould
bewisetocalculatethetimetableatatimewherethereisnohighloadontheserverfromother
services;atnightorintheweekendsshouldbeafeasibletimetodothecalculation.
3.3.2 InternetAccess
InternetaccessinZambiaisverylimitedintermsofspeedandbandwidth,sodependingonwhere
thesystemwillbe hostedthis might cause problems. . Thereforewestrongly y advisetohost the
wholeOPUSsystemonaserver withinthelocalnetwork,thiswayyoucanensureahighspeed
connection.
4 ArchitecturalStrategies
TheTimetablingmodulewillusea‘MemeticAlgorithm’. AMemeticAlgorithmisasearchtech-
niqueusedtosolve problems by mimickingmolecular processes of evolutionincludingselection,
recombination,mutationandinheritance. Therationalebehindusingthistechniqueis s thatcon-
structingatimetableconsistsofselecting,recombining,andmutatingthedates,times,andlocations
ofsubjectsandexams.Furthermore,timetableconstructionisa‘NP-complete’problem
1
,meaning
that there is noknown n ecient t way to ndanoptimal l solutiontothe problem of timetabling.
Thetime requiredto solve theproblemtondthe optimalsolution usingany currently known
algorithmincreasesveryquicklyasthesizeoftheproblemgrows. Asaresult,thetimerequiredto
solveevenmoderatelylargeversionsofmanyNP-completeproblemeasilyreachesintothebillions
or trillions ofyears, , usingany y amount of computingpower available today. . As s aconsequence,
determiningwhether or not itis possible to solvethese problems quicklyis one ofthe principal
unsolvedproblemsincomputersciencetoday.
4.1 Conclusion
Becauseitisimpracticaltoconsiderenumeratingallpossiblecombinationsweneedtochoosean
approachwhichvisitsasubsetofthesolutionspace. Inpractice,itisoftensucienttondagood
solutioninsteadofanoptimum.Thechallengeistoproduceinaminimumtimeasolutionasclose
as possibletooptimalones. . Weuseabio-inspiredalgorithmknownas s aMemeticAlgorithmfor
this(ForamoredetaileddescriptionseeSection6.1).
1
http://en.wikipedia.org/wiki/List_of_NP-complete_problems
7
5 SystemArchitecture
Thissectiondescribes thesystemarchitecture interms ofmodelsandrepresentations. . First t we
willshowhowthetimetablingproblemcanberepresented.Thenwewilldescribethedatabaseand
classmodelsneededfortheimplementation. Finally,wewilldescribetheusecasesforthesystem.
5.1 Problemrepresentation
Oneofthemainproblemsofrepresentationishowonewantstocombinedates(orperiods),sub-
jects/examsandavailablerooms.Wehavechosentokeeptheperiodsdynamicalandthesubjects
androomsstatic. Wemadethischoicebecauseinarealsystem(implementedinaUniversity),the
totalnumberofrulesandsubjectsisstaticallydetermined. ForexampleaUniversitycouldhave
150roomsand200subjects,whiletheperiodscanrangefromoneday,oneweektoonesemester.
Wedenetheproblemencodingasfollows:
2
6
4
C
1
 C
n
.
.
.
.
.
.
.
.
.
C
m
 C
nm
3
7
5
:
(1)
Here,C
i
represents a subject i,n is the totalnumber of periods andm is the totalnumber of
subjects. If f wekeepthenumberofperiodsdynamical,ausercanspecifywhataperiodis. . You
canhaveforexample40periodsinaweek,400inaterm,etcetera. Atthestartofthetimetabling
algorithm, the number r of rooms and d number r ofperiods should d be known. . Thealgorithmthen
knowstheexactsizeoftherepresentation(forexample,whenyouhave40periodsand30rooms,
youhavematrixwith1200instances). Considerthefollowingexample:
 PhysicswithsubjectcodeC2isgivenonMondaythersthour(from8:00till9:00,period
1)inroom3andTuesdaythesecondhour(from9:00till10:00,period10)inroom2.
 MathematicswithsubjectcodeM3isgivenonTuesdaythesecondhour(from9:00till10:00,
period10)inroom1andFridaythelasthour(from16:00till17:00,period40)inroom3.
 BusinessadministrationwithsubjectcodeA1isgivenonMondaythersthour(from8:00
till9:00,period1)inroom2andFriday thelast hour(from16:00till17:00,period40)in
room4.
TherepresentationwouldthenbeasshowninFigure5.1.
Anotherthingthatwehavetomodelaretheconstraintsandthepreferencesofspecicteachers
andschools. Itisneededfor r ouralgorithmthat wecancalculatethetness (or‘goodness’)ofa
generatedtimetable,basedontheconstraintsandpreferences. Aswehavetodeducerulesoutof
theseconstraints,wehavedecidedthatitisbesttohard-codethisinaso-called‘tnessevaluation
function’.
8
Documents you may be interested
Documents you may be interested