Split pdf into multiple files - Merge, append PDF files in C#.net, ASP.NET, MVC, Ajax, WinForms, WPF
Provide C# Demo Codes for Merging and Appending PDF Document
reader merge pdf; append pdf
Split pdf into multiple files - VB.NET PDF File Merge Library: Merge, append PDF files in vb.net, ASP.NET, MVC, Ajax, WinForms, WPF
VB.NET Guide and Sample Codes to Merge PDF Documents in .NET Project
reader combine pdf pages; pdf merge comments
C# PDF File Split Library: Split, seperate PDF into multiple files
outputFiles); Split PDF Document into Multiple PDF Files in C#. You can use the following C# demo to split PDF document to four files.
pdf combine two pages into one; pdf merge documents
VB.NET PDF File Split Library: Split, seperate PDF into multiple
Split PDF file into two or multiple files in ASP.NET webpage online. Split PDF Document into Multiple PDF Files Demo Code in VB.NET.
batch pdf merger online; attach pdf to mail merge
Natural Language Processing with Python
Online Split PDF file. Best free online split PDF tool.
Easy split! We try to make it as easy as possible to split your PDF files into Multiple ones. You can receive the PDF files by simply
c# merge pdf files into one; combine pdfs online
C# PDF Page Insert Library: insert pages into PDF file in C#.net
the ability to inserting a new PDF page into existing PDF PDF page using C# .NET, how to reorganize PDF document pages and how to split PDF document in
all jpg to one pdf converter; reader combine pdf
VB.NET PDF Convert to Jpeg SDK: Convert PDF to JPEG images in vb.
Images. File & Page Process. File: Merge, Append PDF Files. File: Split PDF Document. Turn multiple pages PDF into multiple jpg files in VB.NET class.
c# merge pdf; add two pdf files together
VB.NET TWAIN: Scanning Multiple Pages into PDF & TIFF File Using
This VB.NET TWAIN pages scanning control add-on is developed to offer programmers an efficient solution to scan multiple pages into one PDF or TIFF
acrobat split pdf into multiple files; pdf merge
Natural Language Processing
with Python
Steven Bird, Ewan Klein, and Edward Loper
Beijing
Cambridge
Farnham
Köln
Sebastopol
Taipei
Tokyo
C# PDF: C#.NET PDF Document Merging & Splitting Control SDK
C#.NET PDF Splitter to Split PDF File. In this section, we aims to tell you how to divide source PDF file into two smaller PDF documents at the page
add multiple pdf files into one online; pdf merger
VB.NET PDF Library SDK to view, edit, convert, process PDF file
Simply integrate into VB.NET project, supporting conversions to or from multiple supported images formats; merge, append, and split PDF files; insert, delete
attach pdf to mail merge in word; how to combine pdf files
Natural Language Processing with Python
by Steven Bird, Ewan Klein, and Edward Loper
Copyright © 2009 Steven Bird, Ewan Klein, and Edward Loper. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.
O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.
Editor:
Julie Steele
Production Editor:
Loranah Dimant
Copyeditor:
Genevieve d’Entremont
Proofreader:
Loranah Dimant
Indexer:
Ellen Troutman Zaig
Cover Designer:
Karen Montgomery
Interior Designer:
David Futato
Illustrator:
Robert Romano
Printing History:
June 2009:
First Edition. 
Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Natural Language Processing with Python, the image of a right whale, and related
trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.
While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.
ISBN: 978-0-596-51649-9
[M]
1244726609
Table of Contents
Preface ..................................................................... ix
1. Language Processing and Python .......................................... 1
1.1 Computing with Language: Texts and Words
1
1.2 A Closer Look at Python: Texts as Lists of Words
10
1.3 Computing with Language: Simple Statistics
16
1.4 Back to Python: Making Decisions and Taking Control
22
1.5 Automatic Natural Language Understanding
27
1.6 Summary
33
1.7 Further Reading
34
1.8 Exercises
35
2. Accessing Text Corpora and Lexical Resources ............................... 39
2.1 Accessing Text Corpora
39
2.2 Conditional Frequency Distributions
52
2.3 More Python: Reusing Code
56
2.4 Lexical Resources
59
2.5 WordNet
67
2.6 Summary
73
2.7 Further Reading
73
2.8 Exercises
74
3. Processing Raw Text .................................................... 79
3.1 Accessing Text from the Web and from Disk
80
3.2 Strings: Text Processing at the Lowest Level
87
3.3 Text Processing with Unicode
93
3.4 Regular Expressions for Detecting Word Patterns
97
3.5 Useful Applications of Regular Expressions
102
3.6 Normalizing Text
107
3.7 Regular Expressions for Tokenizing Text
109
3.8 Segmentation
112
3.9 Formatting: From Lists to Strings
116
v
3.10 Summary
121
3.11 Further Reading
122
3.12 Exercises
123
4. Writing Structured Programs ........................................... 129
4.1 Back to the Basics
130
4.2 Sequences
133
4.3 Questions of Style
138
4.4 Functions: The Foundation of Structured Programming
142
4.5 Doing More with Functions
149
4.6 Program Development
154
4.7 Algorithm Design
160
4.8 A Sample of Python Libraries
167
4.9 Summary
172
4.10 Further Reading
173
4.11 Exercises
173
5. Categorizing and Tagging Words ........................................ 179
5.1 Using a Tagger
179
5.2 Tagged Corpora
181
5.3 Mapping Words to Properties Using Python Dictionaries
189
5.4 Automatic Tagging
198
5.5 N-Gram Tagging
202
5.6 Transformation-Based Tagging
208
5.7 How to Determine the Category of a Word
210
5.8 Summary
213
5.9 Further Reading
214
5.10 Exercises
215
6. Learning to Classify Text ............................................... 221
6.1 Supervised Classification
221
6.2 Further Examples of Supervised Classification
233
6.3 Evaluation
237
6.4 Decision Trees
242
6.5 Naive Bayes Classifiers
245
6.6 Maximum Entropy Classifiers
250
6.7 Modeling Linguistic Patterns
254
6.8 Summary
256
6.9 Further Reading
256
6.10 Exercises
257
7. Extracting Information from Text ........................................ 261
7.1 Information Extraction
261
vi | | Table of Contents
7.2 Chunking
264
7.3 Developing and Evaluating Chunkers
270
7.4 Recursion in Linguistic Structure
277
7.5 Named Entity Recognition
281
7.6 Relation Extraction
284
7.7 Summary
285
7.8 Further Reading
286
7.9 Exercises
286
8. Analyzing Sentence Structure ........................................... 291
8.1 Some Grammatical Dilemmas
292
8.2 What’s the Use of Syntax?
295
8.3 Context-Free Grammar
298
8.4 Parsing with Context-Free Grammar
302
8.5 Dependencies and Dependency Grammar
310
8.6 Grammar Development
315
8.7 Summary
321
8.8 Further Reading
322
8.9 Exercises
322
9. Building Feature-Based Grammars ...................................... 327
9.1 Grammatical Features
327
9.2 Processing Feature Structures
337
9.3 Extending a Feature-Based Grammar
344
9.4 Summary
356
9.5 Further Reading
357
9.6 Exercises
358
10. Analyzing the Meaning of Sentences ..................................... 361
10.1 Natural Language Understanding
361
10.2 Propositional Logic
368
10.3 First-Order Logic
372
10.4 The Semantics of English Sentences
385
10.5 Discourse Semantics
397
10.6 Summary
402
10.7 Further Reading
403
10.8 Exercises
404
11. Managing Linguistic Data .............................................. 407
11.1 Corpus Structure: A Case Study
407
11.2 The Life Cycle of a Corpus
412
11.3 Acquiring Data
416
11.4 Working with XML
425
Table of Contents s | vii
11.5 Working with Toolbox Data
431
11.6 Describing Language Resources Using OLAC Metadata
435
11.7 Summary
437
11.8 Further Reading
437
11.9 Exercises
438
Afterword: The Language Challenge ........................................... 441
Bibliography ............................................................... 449
NLTK Index ................................................................ 459
General Index .............................................................. 463
viii | | Table of Contents
Documents you may be interested
Documents you may be interested