﻿
EXERCISE13
Comparethefollowingcommands.
1. $F_{2}^{2}$and$F{}_{2}^{2}$.
2. $x_{1}^{y}$,$x^{y}_{1}$,and$x^{y_{1}}$.
EXERCISE14
Explainhowtoformatthefollowingunitconversion.
henry=1:113£10
¡12
sec
2
=cm
EXERCISE15
CreateaLAT
E
XdocumentthatformatsthetextshowninFigure11.
Theequation
ax
2
+bx+c
hasassolution
x
12
=
¡b§
p
b
2
¡4ac
2a
Figure11: AMathematicalText.
EXERCISE16
CreateaL
A
T
E
XdocumentthatformatsthetextshowninFigure12.
12
†>0
(2)
Fromcondition(2)follows...
Figure12:AMathematicalFragment.
4.4 Alignments
AnexamplethatshowshowyoucanalignequationsinLAT
E
X:
x
2
+y
2
= 1
(3)
y =
p
1¡x2
(4)
\begin{eqnarray}
x^2+y^2 &=& & 1 1 \\ \ y y &=& & \sqrt{1-x^2}
\end{eqnarray}
Verticalalignmentiswithrespecttothemathematicalsymbolthathasbeenplacedbetween
ampersands. Linesareseparatedbytheusual\\. Alllinesarenumberedseparately,except
linesthathavea\nonumbercommand.Theeqnarray*environmentisthesameaseqnarray
exceptthatitdoesnotgenerateequationnumbers.
12
Thelabelisautomaticallycreatedandwillprobablydiﬁerformyours.
31
Reader combine pdf - Merge, append PDF files in C#.net, ASP.NET, MVC, Ajax, WinForms, WPF
Provide C# Demo Codes for Merging and Appending PDF Document
add pdf files together; combine pdf files
Reader combine pdf - VB.NET PDF File Merge Library: Merge, append PDF files in vb.net, ASP.NET, MVC, Ajax, WinForms, WPF
VB.NET Guide and Sample Codes to Merge PDF Documents in .NET Project
best pdf merger; merge pdf
EXERCISE17
Explainhowtoformatthefollowingsystemofequations.
x+2y¡3z = = ¡11
y+z = = 11
3z = = 21
The amsmath package deﬂnes several l convenient environments for creating g multiline
displayequations,someofwhichallowingyoutoalignpartsofaformula.Theyalsoprovide
better spacing aroundthe alignment points comparedto the eqnarrayenvironment. . The
followingexampleillustratesthis.
Compare
x
2
+y
2
<1
y=
p
1¡x2
with
x
2
+y
2
< 1
y =
p
1¡x2
Compare
\begin{align*}
x^2+y^2 &< 1 1 \\ y &= \sqrt{1-x^2}
\end{align*}
with
\begin{eqnarray*}
x^2+y^2 &<& & 1 1 \\ \ y y &=& & \sqrt{1-x^2}
\end{eqnarray*}
Notethediﬁerencebetweentheeqnarrayandalignenvironmentintheirmethodformarking
thealignment points. . eqnarrayusestwoampersandcharacterssurroundingthe e partthat
shouldbealigned. Thealignenvironmentuses s asingleampersandtomark thealignment
point:theampersandisplacedinfrontofthecharacterthatshouldbealignedverticallywith
otherlines.
Thepackagesalignandalign*,whichisthesamebutwithoutautomaticnumberingof
theformula,alignatasingleplace.Foralignmentatseveralplacesyoumustusethealignat
environmentoralignat*.Anexample:
F
0
=0
F
1
=1
F
2
=1
F
3
=2
F
4
=3
F
5
=5
\begin{alignat*}{2}
F_0 &= 0 & & \qquad d F_1 1 &= 1 1 \\
F_2 &= 1 & & \qquad d F_3 3 &= 2 2 \\
F_4 &= 3 & & \qquad d F_5 5 &= 5
\end{alignat*}
Thesplitenvironmentallowsyoutosplitalargeformulaintomultiplelines.
(x+y)
n
=
n
X
k=0
µ
n
k
x
k
y
n¡k
=x
n
+nx
n¡1
y+
n(n¡1)
2
x
n¡2
y
2
+¢¢¢+nxy
n¡1
+y
n
$\begin{split} (x+y)^n &= \sum_{k=0}^{n}\binom{n}{k} x^{k}y^{n-k} \\ \ &= x^n n + nx^{n-1}y + \frac{n(n-1)}{2}x^{n-2}y^2\\ &\quad + \cdots + nxy^{n-1} } + + y^n\\ \end{split}$
32
C# PDF: C#.NET PDF Document Merging & Splitting Control SDK
PDF Merging & Splitting Application. This C#.NET PDF document merger & splitter control toolkit is designed to help .NET developers combine PDF document files
add pdf pages together; c# merge pdf files into one
VB.NET PDF: Use VB.NET Code to Merge and Split PDF Documents
Combine End Sub Private Sub Combine(source As List(Of [String]), destn As [String]) Implements PDFDocument.Combine End Sub. APIs for Splitting PDF document in
Thisexamplealsoshowsyouhowtoformatabinomialcoe–centintheamsmathpackage.
EXERCISE18
Explainhowtoformatthefollowingformula.
x=rcossinµ
y=rsinsinµ
z=rcosµ
EXERCISE19
Explainhowyoucanformatthefollowingformula.
x+2y¡3z=¡11
y+ z=
11
z=
21
4.5 Matrices
InTable18welistthematrixenvironmentsthatLAT
E
Xprovides. Intheseenvironmentsyou
cannotspecifytheformatofthecolumns. Ifyoudowanttocontrolthis,thenyoumustuse
thearrayenvironment.Asimpleexamplewilldo.
Compare
M=
µ
x
x
2
1+x 1+x+x
2
and
M=
µ
x
x
2
1+x 1+x+x
2
Compare
$\mathbf{M} = = \begin{pmatrix} x & x^2 2 \\ 1+x x & 1+x+x^2 2 \end{pmatrix}$
and
$\mathbf{M} = = \left( \begin{array}{ll} x & x^2 2 \\ 1+x x & 1+x+x^2 \end{array}\right)$
33
How to combine PDF Document Processing DLL with Barcode As String = FolderName & "Sample.pdf" Dim reImage own customized Word Intelligent Mail Barcode Reader.
pdf merge documents; add pdf together one file
C# PowerPoint - Merge PowerPoint Documents in C#.NET
Combine and Merge Multiple PowerPoint Files into One Using C#. This part illustrates how to combine three PowerPoint files into a new file in C# application.
pdf combine; acrobat reader merge pdf files
environment
example
result
\matrix
$\begin{matrix} 1 1 & 2 2 \\ 1 2 3 4 3 & 4\end{matrix}$
\pmatrix
$\begin{pmatrix} 1 1 & & 2 \\ µ 1 2 3 4 3 & & 4\end{pmatrix}$
\bmatrix
$\begin{bmatrix} 1 1 & & 2 \\ 1 2 3 4 3 & & 4\end{bmatrix}$
\vmatrix
$\begin{vmatrix} 1 1 & & 2 \\ 1 2 3 4 3 & & 4\end{vmatrix}$
\Vmatrix
$\begin{Vmatrix} 1 1 & & 2 \\ ° ° ° ° 1 2 3 4 ° ° ° ° 3 & & 4\end{bmatrix}$
Table18: MatrixEnvironments.
EXERCISE20
Explainhowtoformatthefollowingmatrix.
A=
0
@
1 a a b
: 1 c
: : : 1
1
A
4.6 Dots s inFormulas
Thecommands\ldotsand\cdotsproducetwokindsofellipsis(...).
Alowellipsis: x
1
;:::;x
n
.
Acenteredellipsis:x
1
+¢¢¢+x
n
A low ellipsis: $x_1, , \ldots, x_n$.\\
A centered d ellipsis: : $x_1 + \cdots + x_n$
Othercommandstoproducedotsareshowninthefollowingexample:
A=
0
B
B
B
@
a
11
a
12
::: a
1n
a
21
a
22
::: a
2n
.
.
.
.
.
.
.
.
.
.
.
.
a
m1
a
m2
::: a
mn
1
C
C
C
A
$A A = = \begin{pmatrix} a_{11} & a_{12} & \ldots s & & a_{1n} \\ a_{21} & a_{22} & \ldots s & & a_{2n} \\ \vdots & \vdots & \ddots s & & \vdots \\ a_{m1} & a_{m2} & \ldots s & & a_{mn} \\ \end{pmatrix}$
EXERCISE21
Explainhowtoformatthefollowingstatement.
if v=(v
1
;:::;v
n
) then n v
t
=
0
B
@
v
1
.
.
.
v
n
1
C
A
34
C# Word - Merge Word Documents in C#.NET
Combine and Merge Multiple Word Files into One Using C#. This part illustrates how to combine three Word files into a new file in C# application.
pdf combine pages; batch pdf merger online
C# PDF File Split Library: Split, seperate PDF into multiple files
Split PDF document by PDF bookmark and outlines. Also able to combine generated split PDF document files with other PDF files to form a new PDF file.
c# merge pdf pages; pdf combine files online
4.7 Delimiters
InTable19arelistedthebasicbracketsanddelimiters.
input
meaning
display
(
leftparenthesis
(
)
rightparenthesis
)
[or\lbrack
leftbracket
[
]or\rbrack
rightbracket
]
\{or\lbrace
leftcurlybracket
f
\}or\rbrace
rightcurlybracket
g
\lfloor
left°oorbracket
b
\rfloor
right°oorbracket
c
\lceil
leftceilbracket
d
\rceil
rightceilbracket
e
\langle
leftanglebracket
h
\rangle
rightanglebracket
i
/
slash
=
\backslash
reverseslash
n
|or\vert
verticalbar
j
\|or\Vert
doubleverticalbar
k
\uparrow
upwardarrow
"
\Uparrow
doubleupwardarrow
*
\downarrow
downwardarrow
#
\Downarrow
doubledownwardarrow
+
\updownarrow
up-and-downarrow
l
\Updownarrow
doubleup-and-downarrow
m
Table19: Delimiters.
Ifyouputthe\leftcommandinfrontofanopeningdelimiterandthe\rightcommand
atclosure,thenLAT
E
Xautomaticallytriestoresizethedelimiterstoanappropriatesize.
ˆ
n
X
k=1
k
3
!
=
µ
n(n+1)
2
2
$\left(\sum_{k=1}^n k^3\right) = \left(\frac{n(n+1)}{2}\right)^2$
Inthisexample,youmaywanttohavetheoutmostbracketsofthesamesize. Thenyoumust
useoneofthecommands\bigl,\Bigl,\biggl,\Biggl,andtheanalogouscommandwith
\bigr,andsoon.InTable20weshowthevarioussizes.
ˆ
Xn
k=1
k
3
!
=
ˆ
n(n+1)
2
!
2
$\Biggl(\sum_{k=1}^n k^3\Biggr) = \Biggr(\frac{n(n+1)}{2}\Biggr)^2$
35
VB.NET TIFF: Merge and Split TIFF Documents with RasterEdge .NET
filePath As [String], docList As [String]()) TIFFDocument.Combine(filePath, docList) End to provide powerful & profession imaging controls, PDF document, tiff
break a pdf into multiple files; attach pdf to mail merge in word
VB.NET PowerPoint: Merge and Split PowerPoint Document(s) with PPT
Just like we need to combine PPT files, sometimes, we also want to separate a Note: If you want to see more PDF processing functions in VB.NET, please follow
add two pdf files together; c# merge pdf
normalsize
()[]fgbcdehi=njk"*#+lm
\bigsize
¡¢£⁄'“¥ƒ§¤›ﬁ–†ﬂ
°
°
x
?
~
w
?
y
w
˜
x
y
~
˜
\Bigsize
‡·hinojklmDE./ﬂ
°
°
°
x
?
?
~
w
w
?
?
y
w
w
˜
x
?
y
~
w
˜
\biggsize
µ¶•‚‰¾„”»…¿À`´ﬂ
°
°
°
°
x
?
?
?
~
w
w
w
?
?
?
y
w
w
w
˜
x
?
?
y
~
w
w
˜
\Biggsize
ˆ!"#()$%&’*+,-ﬂ ° ° ° ° ° x ? ? ? ? ~ w w w w ? ? ? ? y w w w w ˜ x ? ? ? y ~ w w w ˜ Table20: ResizingDelimiters. The\leftand\rightcommandsmustcomeinmatchingpairs,butthematchingdelim- itersneednotbethesame. Aninvisibledelimitercanforinstancebecreatedbyenteringa dot(‘.’) afterthe\leftand\rightcommand.Thefollowingexampleillustratesthis: jxj= ¡x ifx<0; x otherwise $|x| = \left\{ \begin{array}{ll} -x & & \textnormal{if f x<0}, \\ x & \textnormal{otherwise} \end{array} \right.$ However,iteasiertousethecasesenvironmentinthisexample. jxj= ( ¡x ifx<0; x otherwise $|x| = \begin{cases} -x & & \textnormal{if f x<0}, \\ x & \textnormal{otherwise} \end{cases}$ EXERCISE22 Explainhowtoformatthefollowingformula. lim x#0 1 x =1 6=lim x"0 1 x EXERCISE23 Explainhowtoformatthefollowingformula. f(x)= ( 1 ifx6=0; sinx x otherwise EXERCISE24 Explainhowtoformatthefollowingruleofpartialintegration. Z b a f 0 (x)g(x)dx=f(x)g(x) b a ¡ Z b a f(x)g 0 (x)dx 36 4.8 Decorations Youcaneasilyputahorizontallineorhorizontalbraceaboveorbelowaformula. 1+ 1 2 + 1 3 + 1 4 | {z } + 1 5 + 1 6 + 1 7 + 1 8 | {z } +¢¢¢ $1 1 + + \frac{1}{2} } + \underbrace{\frac{1}{3} + \frac{1}{4}} + \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + + \frac{1}{8}} } + \cdots s$ The\stackrelcommandstacksonesymbolaboveanother. ~v def =(v 1 ;:::;v n ) $\vec{v} \stackrel{\mathrm{def}}{=} (v_1,\ldots, v_n)$ 4.9 Theorem,Conjectures,etc. Statementoftheorems,lemmas,corollaries,conjectures,andsoon,israthereasyinLAT E Xas thefollowingexamplesillustrate. Theorem1 There e exist inﬂnitely manyprimenumbers. Conjecture1 Thereexistinﬂnite- ly many prime numbers p of f the formp=2 n ¡1. Conjecture2(Artin,1927) Let a>1 1 beanintegerthat t isnot a square. . Then, , a is a primitive root modulo o inﬂnitely y many prime numbersp. \newtheorem{theorem}{Theorem} \begin{theorem} There exist infinitely many prime numbers. \end{theorem} \newtheorem{conj}{Conjecture} \begin{conj} There exist infinitely many prime numbers$p$of the e form m$p=2^n-1$. \end{conj} \begin{conj}[Artin, 1927] Let$a>1$be an integer that is not t a square. Then,$a is a primitive e root
modulo infinitely many prime numbers $p$.
\end{conj}
5 OddandEnds
† LAT
E
Xusesthesinglequotes‘and’asquotationmarks. Neverusethedoublequote
entertwosinglequotes.
† NotethevarioususesofdashesinL
A
T
E
X:
37
input
meaning
example
-
hyphen
X-rated
--
en-dash
pages1{10
---
em-dash
thisis|nomenestomen|for...
$-$
minussign
¡4
Table21: DashesandHyphens.
† The\noindentcommandatthebeginningofaparagraphsuppressesindentation.
† You can split large L
A
T
E
Xﬂles into smaller ones and d usethe \include e commandto
includetheﬂleforformatting.Themainstructureofthedocumentmaylooklike:
\begin{document}
\include{ch1} % % include chapter ch1.tex
\include{ch2} % % include chapter ch2.tex
\include{app} % % include appendix app.tex
\end{document}
Formattingofanincludedﬂlestartsalwaysatanewpage.Toavoidthis,usetheinput
command.
6 WheretoGetL
A
T
E
X?
Thereareseveraldistributions ofLAT
E
Xinthepublicdomain. OntheUNIX X computerof
hensiveTexArchiveNetwork(CTAN),intheNetherlandsfromURL
ftp://ftp.ntg.nl/pub/tex-archive/
teTeXcomesalongwiththeRedHatdistributionofLinux.ThewebsiteofteTeXis
www.tug.org/teTeX
TheDutchT
E
X|UsersGroup(website:www.ntg.nl)istheproducerofacd-romwiththe
4TeXdistributionforPC-users. Fordetailswerefertothewebsite
4tex.ntg.nl
AhighlyregardedsetupforWindows(allcurrentvariants)isMikTeX.Itcanbeobtained
fromitswebsite
www.miktex.org
Thisisarathercompleteconﬂguration,whichincludespreviewingandPDFconversion. You
willonlyneedaconvenientedit.SomewidelyusededitorsareWinShellforWindows(down-
AcompletelistofavailablesystemscanbefoundonthewebsiteoftheworldwideTeX
UsersGroupis
www.tug.org
A
T
E
X.
38
References
[GMS94] M.Goossens,F.Mittelbach,A.Samarin.TheLAT
E
Wesley(1994),ISBN0-201-54199-8.
[Hec03] A. . Heck. Learning MetaPost t by Doing g (2003), Electronically y available (date:
3/3/2005)inPDF-formatatURL
www.science.uva.nl/~heck/Courses/mptut.pdf.
[MG04] F. . Mittelbach, , M. . Goossens. The LAT
E
X Companion n { { 2nd ed. . Addison-Wesley
(2004),ISBN0-201-36299-6.
[Lam94] L.Lamport: : LAT
E
[Oos97] P.van n Oostrum. Handleiding L
A
T
E
X (inDutch, , 1997), A version adaptedto the
localsituationisavailable(date: 3/3/2005)inPDF-formatonthewebsiteatURL
www.science.uva.nl/onderwijs/lesmateriaal/latex/latex.pdf.
[Rec97] K.Reckdahl.UsingImportedGraphicsinL
A
T
E
X2
"
(1997).Electronicallyavailable
(date: 3/3/2005)inPDF-formatatURL
ftp://ftp.dante.de/tex-archive/info/epslatex.pdf.
39