and
(30.36)
E
2
=−
Z
2
2
2
E
0
=−
73
2
4
13.6 eV
= −18.1 keV.
Thus,
(30.37)
E
K
α
= −18.1 keV−
−72.5 keV
=54.4 keV.
Discussion
This large photon energy is typical of characteristic x rays from heavy elements. It is large compared with other atomic emissions because it is
produced when an inner-shell vacancy is filled, and inner-shell electrons are tightly bound. Characteristic x ray energies become progressively
larger for heavier elements because their energy increases approximately as
Z
2
. Significant accelerating voltage is needed to create these
inner-shell vacancies. In the case of tungsten, at least 72.5 kV is needed, because other shells are filled and you cannot simply bump one
electron to a higher filled shell. Tungsten is a common anode material in x-ray tubes; so much of the energy of the impinging electrons is
absorbed, raising its temperature, that a high-melting-point material like tungsten is required.
Medical and Other Diagnostic Uses of X-rays
All of us can identify diagnostic uses of x-ray photons. Among these are the universal dental and medical x rays that have become an essential part
of medical diagnostics. (SeeFigure 30.25andFigure 30.26.) X rays are also used to inspect our luggage at airports, as shown inFigure 30.24, and
for early detection of cracks in crucial aircraft components. An x ray is not only a noun meaning high-energy photon, it also is an image produced by x
rays, and it has been made into a familiar verb—to be x-rayed.
Figure 30.24An x-ray image reveals fillings in a person’s teeth. (credit: Dmitry G, Wikimedia Commons)
Figure 30.25This x-ray image of a person’s chest shows many details, including an artificial pacemaker. (credit: Sunzi99, Wikimedia Commons)
Figure 30.26This x-ray image shows the contents of a piece of luggage. The denser the material, the darker the shadow. (credit: IDuke, Wikimedia Commons)
The most common x-ray images are simple shadows. Since x-ray photons have high energies, they penetrate materials that are opaque to visible
light. The more energy an x-ray photon has, the more material it will penetrate. So an x-ray tube may be operated at 50.0 kV for a chest x ray,
whereas it may need to be operated at 100 kV to examine a broken leg in a cast. The depth of penetration is related to the density of the material as
well as to the energy of the photon. The denser the material, the fewer x-ray photons get through and the darker the shadow. Thus x rays excel at
detecting breaks in bones and in imaging other physiological structures, such as some tumors, that differ in density from surrounding material.
Because of their high photon energy, x rays produce significant ionization in materials and damage cells in biological organisms. Modern uses
minimize exposure to the patient and eliminate exposure to others. Biological effects of x rays will be explored in the next chapter along with other
types of ionizing radiation such as those produced by nuclei.
CHAPTER 30 | ATOMIC PHYSICS S 1079
Pdf split file - Split, seperate PDF into multiple files in C#.net, ASP.NET, MVC, Ajax, WinForms, WPF
Explain How to Split PDF Document in Visual C#.NET Application
break pdf into multiple pages; break pdf into smaller files
Pdf split file - VB.NET PDF File Split Library: Split, seperate PDF into multiple files in vb.net, ASP.NET, MVC, Ajax, WinForms, WPF
VB.NET PDF Document Splitter Control to Disassemble PDF Document
break password pdf; pdf specification
As the x-ray energy increases, the Compton effect (seePhoton Momentum) becomes more important in the attenuation of the x rays. Here, the x
ray scatters from an outer electron shell of the atom, giving the ejected electron some kinetic energy while losing energy itself. The probability for
attenuation of the x rays depends upon the number of electrons present (the material’s density) as well as the thickness of the material. Chemical
composition of the medium, as characterized by its atomic number
Z
, is not important here. Low-energy x rays provide better contrast (sharper
images). However, due to greater attenuation and less scattering, they are more absorbed by thicker materials. Greater contrast can be achieved by
injecting a substance with a large atomic number, such as barium or iodine. The structure of the part of the body that contains the substance (e.g.,
the gastro-intestinal tract or the abdomen) can easily be seen this way.
Breast cancer is the second-leading cause of death among women worldwide. Early detection can be very effective, hence the importance of x-ray
diagnostics. A mammogram cannot diagnose a malignant tumor, only give evidence of a lump or region of increased density within the breast. X-ray
absorption by different types of soft tissue is very similar, so contrast is difficult; this is especially true for younger women, who typically have denser
breasts. For older women who are at greater risk of developing breast cancer, the presence of more fat in the breast gives the lump or tumor more
contrast. MRI (Magnetic resonance imaging) has recently been used as a supplement to conventional x rays to improve detection and eliminate false
positives. The subject’s radiation dose from x rays will be treated in a later chapter.
A standard x ray gives only a two-dimensional view of the object. Dense bones might hide images of soft tissue or organs. If you took another x ray
from the side of the person (the first one being from the front), you would gain additional information. While shadow images are sufficient in many
applications, far more sophisticated images can be produced with modern technology.Figure 30.27shows the use of a computed tomography (CT)
scanner, also called computed axial tomography (CAT) scanner. X rays are passed through a narrow section (called a slice) of the patient’s body (or
body part) over a range of directions. An array of many detectors on the other side of the patient registers the x rays. The system is then rotated
around the patient and another image is taken, and so on. The x-ray tube and detector array are mechanically attached and so rotate together.
Complex computer image processing of the relative absorption of the x rays along different directions produces a highly-detailed image. Different
slices are taken as the patient moves through the scanner on a table. Multiple images of different slices can also be computer analyzed to produce
three-dimensional information, sometimes enhancing specific types of tissue, as shown inFigure 30.28. G. Hounsfield (UK) and A. Cormack (US)
won the Nobel Prize in Medicine in 1979 for their development of computed tomography.
Figure 30.27A patient being positioned in a CT scanner aboard the hospital ship USNS Mercy. The CT scanner passes x rays through slices of the patient’s body (or body
part) over a range of directions. The relative absorption of the x rays along different directions is computer analyzed to produce highly detailed images. Three-dimensional
information can be obtained from multiple slices. (credit: Rebecca Moat, U.S. Navy)
Figure 30.28This three-dimensional image of a skull was produced by computed tomography, involving analysis of several x-ray slices of the head. (credit: Emailshankar,
Wikimedia Commons)
X-Ray Diffraction and Crystallography
Since x-ray photons are very energetic, they have relatively short wavelengths. For example, the 54.4-keV
K
α
x ray ofExample 30.2has a
wavelength
λ=hc/E=0.0228 nm
. Thus, typical x-ray photons act like rays when they encounter macroscopic objects, like teeth, and produce
sharp shadows; however, since atoms are on the order of 0.1 nm in size, x rays can be used to detect the location, shape, and size of atoms and
molecules. The process is calledx-ray diffraction, because it involves the diffraction and interference of x rays to produce patterns that can be
analyzed for information about the structures that scattered the x rays. Perhaps the most famous example of x-ray diffraction is the discovery of the
double-helix structure of DNA in 1953 by an international team of scientists working at the Cavendish Laboratory—American James Watson,
Englishman Francis Crick, and New Zealand–born Maurice Wilkins. Using x-ray diffraction data produced by Rosalind Franklin, they were the first to
discern the structure of DNA that is so crucial to life. For this, Watson, Crick, and Wilkins were awarded the 1962 Nobel Prize in Physiology or
Medicine. There is much debate and controversy over the issue that Rosalind Franklin was not included in the prize.
Figure 30.29shows a diffraction pattern produced by the scattering of x rays from a crystal. This process is known as x-ray crystallography because
of the information it can yield about crystal structure, and it was the type of data Rosalind Franklin supplied to Watson and Crick for DNA. Not only do
x rays confirm the size and shape of atoms, they give information on the atomic arrangements in materials. For example, current research in high-
temperature superconductors involves complex materials whose lattice arrangements are crucial to obtaining a superconducting material. These can
be studied using x-ray crystallography.
1080 CHAPTER 30 | ATOMIC PHYSICS
This content is available for free at http://cnx.org/content/col11406/1.7
Online Split PDF file. Best free online split PDF tool.
Split PDF file. Just upload your file by clicking on the blue button or drag-and-drop your PDF file into the drop area. Then set your PDF file split settings.
break a pdf into multiple files; pdf split pages
VB.NET PDF File Compress Library: Compress reduce PDF size in vb.
Also able to uncompress PDF file in VB.NET programs. Offer flexible and royalty-free developing library license for VB.NET programmers to compress PDF file.
pdf splitter; break a pdf password
Figure 30.29X-ray diffraction from the crystal of a protein, hen egg lysozyme, produced this interference pattern. Analysis of the pattern yields information about the structure
of the protein. (credit: Del45, Wikimedia Commons)
Historically, the scattering of x rays from crystals was used to prove that x rays are energetic EM waves. This was suspected from the time of the
discovery of x rays in 1895, but it was not until 1912 that the German Max von Laue (1879–1960) convinced two of his colleagues to scatter x rays
from crystals. If a diffraction pattern is obtained, he reasoned, then the x rays must be waves, and their wavelength could be determined. (The
spacing of atoms in various crystals was reasonably well known at the time, based on good values for Avogadro’s number.) The experiments were
convincing, and the 1914 Nobel Prize in Physics was given to von Laue for his suggestion leading to the proof that x rays are EM waves. In 1915, the
unique father-and-son team of Sir William Henry Bragg and his son Sir William Lawrence Bragg were awarded a joint Nobel Prize for inventing the x-
ray spectrometer and the then-new science of x-ray analysis. The elder Bragg had migrated to Australia from England just after graduating in
mathematics. He learned physics and chemistry during his career at the University of Adelaide. The younger Bragg was born in Adelaide but went
back to the Cavendish Laboratories in England to a career in x-ray and neutron crystallography; he provided support for Watson, Crick, and Wilkins
for their work on unraveling the mysteries of DNA and to Max Perutz for his 1962 Nobel Prize-winning work on the structure of hemoglobin. Here
again, we witness the enabling nature of physics—establishing instruments and designing experiments as well as solving mysteries in the biomedical
sciences.
Certain other uses for x rays will be studied in later chapters. X rays are useful in the treatment of cancer because of the inhibiting effect they have on
cell reproduction. X rays observed coming from outer space are useful in determining the nature of their sources, such as neutron stars and possibly
black holes. Created in nuclear bomb explosions, x rays can also be used to detect clandestine atmospheric tests of these weapons. X rays can
cause excitations of atoms, which then fluoresce (emitting characteristic EM radiation), making x-ray-induced fluorescence a valuable analytical tool
in a range of fields from art to archaeology.
30.5Applications of Atomic Excitations and De-Excitations
Many properties of matter and phenomena in nature are directly related to atomic energy levels and their associated excitations and de-excitations.
The color of a rose, the output of a laser, and the transparency of air are but a few examples. (SeeFigure 30.30.) While it may not appear that glow-
in-the-dark pajamas and lasers have much in common, they are in fact different applications of similar atomic de-excitations.
Figure 30.30Light from a laser is based on a particular type of atomic de-excitation. (credit: Jeff Keyzer)
The color of a material is due to the ability of its atoms to absorb certain wavelengths while reflecting or reemitting others. A simple red material, for
example a tomato, absorbs all visible wavelengths except red. This is because the atoms of its hydrocarbon pigment (lycopene) have levels
separated by a variety of energies corresponding to all visible photon energies except red. Air is another interesting example. It is transparent to
visible light, because there are few energy levels that visible photons can excite in air molecules and atoms. Visible light, thus, cannot be absorbed.
Furthermore, visible light is only weakly scattered by air, because visible wavelengths are so much greater than the sizes of the air molecules and
atoms. Light must pass through kilometers of air to scatter enough to cause red sunsets and blue skies.
Fluorescence and Phosphorescence
The ability of a material to emit various wavelengths of light is similarly related to its atomic energy levels.Figure 30.31shows a scorpion illuminated
by a UV lamp, sometimes called a black light. Some rocks also glow in black light, the particular colors being a function of the rock’s mineral
composition. Black lights are also used to make certain posters glow.
CHAPTER 30 | ATOMIC PHYSICS S 1081
C# PDF File & Page Process Library SDK for C#.net, ASP.NET, MVC
Well-designed APIs are provided. Splitting PDF File. If you want to split PDF file into two or small files, you may refer to this online guide.
break pdf into single pages; add page break to pdf
VB.NET PDF File Merge Library: Merge, append PDF files in vb.net
Professional VB.NET PDF file merging SDK support Visual Studio .NET. Merge PDF without size limitation. Append one PDF file to the end of another one in VB.NET.
cannot select text in pdf; pdf no pages selected
Figure 30.31Objects glow in the visible spectrum when illuminated by an ultraviolet (black) light. Emissions are characteristic of the mineral involved, since they are related to
its energy levels. In the case of scorpions, proteins near the surface of their skin give off the characteristic blue glow. This is a colorful example of fluorescence in which
excitation is induced by UV radiation while de-excitation occurs in the form of visible light. (credit: Ken Bosma, Flickr)
In the fluorescence process, an atom is excited to a level several steps above its ground state by the absorption of a relatively high-energy UV
photon. This is calledatomic excitation. Once it is excited, the atom can de-excite in several ways, one of which is to re-emit a photon of the same
energy as excited it, a single step back to the ground state. This is calledatomic de-excitation. All other paths of de-excitation involve smaller steps,
in which lower-energy (longer wavelength) photons are emitted. Some of these may be in the visible range, such as for the scorpion inFigure 30.31.
Fluorescenceis defined to be any process in which an atom or molecule, excited by a photon of a given energy, and de-excites by emission of a
lower-energy photon.
Fluorescence can be induced by many types of energy input. Fluorescent paint, dyes, and even soap residues in clothes make colors seem brighter
in sunlight by converting some UV into visible light. X rays can induce fluorescence, as is done in x-ray fluoroscopy to make brighter visible images.
Electric discharges can induce fluorescence, as in so-called neon lights and in gas-discharge tubes that produce atomic and molecular spectra.
Common fluorescent lights use an electric discharge in mercury vapor to cause atomic emissions from mercury atoms. The inside of a fluorescent
light is coated with a fluorescent material that emits visible light over a broad spectrum of wavelengths. By choosing an appropriate coating,
fluorescent lights can be made more like sunlight or like the reddish glow of candlelight, depending on needs. Fluorescent lights are more efficient in
converting electrical energy into visible light than incandescent filaments (about four times as efficient), the blackbody radiation of which is primarily in
the infrared due to temperature limitations.
This atom is excited to one of its higher levels by absorbing a UV photon. It can de-excite in a single step, re-emitting a photon of the same energy, or
in several steps. The process is called fluorescence if the atom de-excites in smaller steps, emitting energy different from that which excited it.
Fluorescence can be induced by a variety of energy inputs, such as UV, x-rays, and electrical discharge.
The spectacular Waitomo caves on North Island in New Zealand provide a natural habitat for glow-worms. The glow-worms hang up to 70 silk
threads of about 30 or 40 cm each to trap prey that fly towards them in the dark. The fluorescence process is very efficient, with nearly 100% of the
energy input turning into light. (In comparison, fluorescent lights are about 20% efficient.)
Fluorescence has many uses in biology and medicine. It is commonly used to label and follow a molecule within a cell. Such tagging allows one to
study the structure of DNA and proteins. Fluorescent dyes and antibodies are usually used to tag the molecules, which are then illuminated with UV
light and their emission of visible light is observed. Since the fluorescence of each element is characteristic, identification of elements within a sample
can be done this way.
Figure 30.32shows a commonly used fluorescent dye called fluorescein. Below that,Figure 30.33reveals the diffusion of a fluorescent dye in water
by observing it under UV light.
Figure 30.32Fluorescein, shown here in powder form, is used to dye laboratory samples. (credit: Benjah-bmm27, Wikimedia Commons)
Figure 30.33Here, fluorescent powder is added to a beaker of water. The mixture gives off a bright glow under ultraviolet light. (credit: Bricksnite, Wikimedia Commons)
1082 CHAPTER 30 | ATOMIC PHYSICS
This content is available for free at http://cnx.org/content/col11406/1.7
C# PDF File Compress Library: Compress reduce PDF size in C#.net
Reduce image resources: Since images are usually or large size, images size reducing can help to reduce PDF file size effectively.
break password on pdf; pdf file specification
C# PDF File Merge Library: Merge, append PDF files in C#.net, ASP.
Professional C#.NET PDF SDK for merging PDF file merging in Visual Studio .NET. Append one PDF file to the end of another and save to a single PDF file.
split pdf; break a pdf into parts
Nano-Crystals
Recently, a new class of fluorescent materials has appeared—“nano-crystals.” These are single-crystal molecules less than 100 nm in size. The
smallest of these are called “quantum dots.” These semiconductor indicators are very small (2–6 nm) and provide improved brightness. They
also have the advantage that all colors can be excited with the same incident wavelength. They are brighter and more stable than organic dyes
and have a longer lifetime than conventional phosphors. They have become an excellent tool for long-term studies of cells, including migration
and morphology. (Figure 30.34.)
Figure 30.34Microscopic image of chicken cells using nano-crystals of a fluorescent dye. Cell nuclei exhibit blue fluorescence while neurofilaments exhibit green. (credit:
Weerapong Prasongchean, Wikimedia Commons)
Once excited, an atom or molecule will usually spontaneously de-excite quickly. (The electrons raised to higher levels are attracted to lower ones by
the positive charge of the nucleus.) Spontaneous de-excitation has a very short mean lifetime of typically about
10
−8
s
. However, some levels have
significantly longer lifetimes, ranging up to milliseconds to minutes or even hours. These energy levels are inhibited and are slow in de-exciting
because their quantum numbers differ greatly from those of available lower levels. Although these level lifetimes are short in human terms, they are
many orders of magnitude longer than is typical and, thus, are said to bemetastable, meaning relatively stable.Phosphorescenceis the de-
excitation of a metastable state. Glow-in-the-dark materials, such as luminous dials on some watches and clocks and on children’s toys and pajamas,
are made of phosphorescent substances. Visible light excites the atoms or molecules to metastable states that decay slowly, releasing the stored
excitation energy partially as visible light. In some ceramics, atomic excitation energy can be frozen in after the ceramic has cooled from its firing. It is
very slowly released, but the ceramic can be induced to phosphoresce by heating—a process called “thermoluminescence.” Since the release is
slow, thermoluminescence can be used to date antiquities. The less light emitted, the older the ceramic. (SeeFigure 30.35.)
Figure 30.35Atoms frozen in an excited state when this Chinese ceramic figure was fired can be stimulated to de-excite and emit EM radiation by heating a sample of the
ceramic—a process called thermoluminescence. Since the states slowly de-excite over centuries, the amount of thermoluminescence decreases with age, making it possible
to use this effect to date and authenticate antiquities. This figure dates from the 11
th
century. (credit: Vassil, Wikimedia Commons)
Lasers
Lasers today are commonplace. Lasers are used to read bar codes at stores and in libraries, laser shows are staged for entertainment, laser printers
produce high-quality images at relatively low cost, and lasers send prodigious numbers of telephone messages through optical fibers. Among other
things, lasers are also employed in surveying, weapons guidance, tumor eradication, retinal welding, and for reading music CDs and computer CD-
ROMs.
Why do lasers have so many varied applications? The answer is that lasers produce single-wavelength EM radiation that is also very coherent—that
is, the emitted photons are in phase. Laser output can, thus, be more precisely manipulated than incoherent mixed-wavelength EM radiation from
other sources. The reason laser output is so pure and coherent is based on how it is produced, which in turn depends on a metastable state in the
lasing material. Suppose a material had the energy levels shown inFigure 30.36. When energy is put into a large collection of these atoms, electrons
are raised to all possible levels. Most return to the ground state in less than about
10
−8
s
, but those in the metastable state linger. This includes
CHAPTER 30 | ATOMIC PHYSICS S 1083
C# Word - Split Word Document in C#.NET
C# DLLs: Split Word File. Add references: RasterEdge.Imaging.Basic.dll. using RasterEdge.XDoc.Word; Split Word file into two files in C#.
break pdf into separate pages; pdf format specification
C# PowerPoint - Split PowerPoint Document in C#.NET
File: Split PowerPoint Document. |. Home ›› XDoc.PowerPoint ›› C# PowerPoint: Split PowerPoint Document. Split PowerPoint file into two files in C#.
acrobat split pdf into multiple files; break pdf password
those electrons originally excited to the metastable state and those that fell into it from above. It is possible to get a majority of the atoms into the
metastable state, a condition called apopulation inversion.
Figure 30.36(a) Energy-level diagram for an atom showing the first few states, one of which is metastable. (b) Massive energy input excites atoms to a variety of states. (c)
Most states decay quickly, leaving electrons only in the metastable and ground state. If a majority of electrons are in the metastable state, a population inversion has been
achieved.
Once a population inversion is achieved, a very interesting thing can happen, as shown inFigure 30.37. An electron spontaneously falls from the
metastable state, emitting a photon. This photon finds another atom in the metastable state and stimulates it to decay, emitting a second photon of
the same wavelength and in phasewith the first, and so on.Stimulated emissionis the emission of electromagnetic radiation in the form of photons
of a given frequency, triggered by photons of the same frequency. For example, an excited atom, with an electron in an energy orbit higher than
normal, releases a photon of a specific frequency when the electron drops back to a lower energy orbit. If this photon then strikes another electron in
the same high-energy orbit in another atom, another photon of the same frequency is released. The emitted photons and the triggering photons are
always in phase, have the same polarization, and travel in the same direction. The probability of absorption of a photon is the same as the probability
of stimulated emission, and so a majority of atoms must be in the metastable state to produce energy. Einstein (again Einstein, and back in 1917!)
was one of the important contributors to the understanding of stimulated emission of radiation. Among other things, Einstein was the first to realize
that stimulated emission and absorption are equally probable. The laser acts as a temporary energy storage device that subsequently produces a
massive energy output of single-wavelength, in-phase photons.
Figure 30.37One atom in the metastable state spontaneously decays to a lower level, producing a photon that goes on to stimulate another atom to de-excite. The second
photon has exactly the same energy and wavelength as the first and is in phase with it. Both go on to stimulate the emission of other photons. A population inversion is
necessary for there to be a net production rather than a net absorption of the photons.
The namelaseris an acronym for light amplification by stimulated emission of radiation, the process just described. The process was proposed and
developed following the advances in quantum physics. A joint Nobel Prize was awarded in 1964 to American Charles Townes (1915–), and Nikolay
Basov (1922–2001) and Aleksandr Prokhorov (1916–2002), from the Soviet Union, for the development of lasers. The Nobel Prize in 1981 went to
Arthur Schawlow (1921-1999) for pioneering laser applications. The original devices were called masers, because they produced microwaves. The
first working laser was created in 1960 at Hughes Research labs (CA) by T. Maiman. It used a pulsed high-powered flash lamp and a ruby rod to
produce red light. Today the name laser is used for all such devices developed to produce a variety of wavelengths, including microwave, infrared,
visible, and ultraviolet radiation.Figure 30.38shows how a laser can be constructed to enhance the stimulated emission of radiation. Energy input
can be from a flash tube, electrical discharge, or other sources, in a process sometimes called optical pumping. A large percentage of the original
pumping energy is dissipated in other forms, but a population inversion must be achieved. Mirrors can be used to enhance stimulated emission by
1084 CHAPTER 30 | ATOMIC PHYSICS
This content is available for free at http://cnx.org/content/col11406/1.7
multiple passes of the radiation back and forth through the lasing material. One of the mirrors is semitransparent to allow some of the light to pass
through. The laser output from a laser is a mere 1% of the light passing back and forth in a laser.
Figure 30.38Typical laser construction has a method of pumping energy into the lasing material to produce a population inversion. (a) Spontaneous emission begins with
some photons escaping and others stimulating further emissions. (b) and (c) Mirrors are used to enhance the probability of stimulated emission by passing photons through the
material several times.
Lasers are constructed from many types of lasing materials, including gases, liquids, solids, and semiconductors. But all lasers are based on the
existence of a metastable state or a phosphorescent material. Some lasers produce continuous output; others are pulsed in bursts as brief as
10
−14
s
. Some laser outputs are fantastically powerful—some greater than
10
12
W
—but the more common, everyday lasers produce something
on the order of
10
−3
W
. The helium-neon laser that produces a familiar red light is very common.Figure 30.39shows the energy levels of helium
and neon, a pair of noble gases that work well together. An electrical discharge is passed through a helium-neon gas mixture in which the number of
atoms of helium is ten times that of neon. The first excited state of helium is metastable and, thus, stores energy. This energy is easily transferred by
collision to neon atoms, because they have an excited state at nearly the same energy as that in helium. That state in neon is also metastable, and
this is the one that produces the laser output. (The most likely transition is to the nearby state, producing 1.96 eV photons, which have a wavelength
of 633 nm and appear red.) A population inversion can be produced in neon, because there are so many more helium atoms and these put energy
into the neon. Helium-neon lasers often have continuous output, because the population inversion can be maintained even while lasing occurs.
Probably the most common lasers in use today, including the common laser pointer, are semiconductor or diode lasers, made of silicon. Here, energy
is pumped into the material by passing a current in the device to excite the electrons. Special coatings on the ends and fine cleavings of the
semiconductor material allow light to bounce back and forth and a tiny fraction to emerge as laser light. Diode lasers can usually run continually and
produce outputs in the milliwatt range.
Figure 30.39Energy levels in helium and neon. In the common helium-neon laser, an electrical discharge pumps energy into the metastable states of both atoms. The gas
mixture has about ten times more helium atoms than neon atoms. Excited helium atoms easily de-excite by transferring energy to neon in a collision. A population inversion in
neon is achieved, allowing lasing by the neon to occur.
CHAPTER 30 | ATOMIC PHYSICS S 1085
There are many medical applications of lasers. Lasers have the advantage that they can be focused to a small spot. They also have a well-defined
wavelength. Many types of lasers are available today that provide wavelengths from the ultraviolet to the infrared. This is important, as one needs to
be able to select a wavelength that will be preferentially absorbed by the material of interest. Objects appear a certain color because they absorb all
other visible colors incident upon them. What wavelengths are absorbed depends upon the energy spacing between electron orbitals in that
molecule. Unlike the hydrogen atom, biological molecules are complex and have a variety of absorption wavelengths or lines. But these can be
determined and used in the selection of a laser with the appropriate wavelength. Water is transparent to the visible spectrum but will absorb light in
the UV and IR regions. Blood (hemoglobin) strongly reflects red but absorbs most strongly in the UV.
Laser surgery uses a wavelength that is strongly absorbed by the tissue it is focused upon. One example of a medical application of lasers is shown
inFigure 30.40. A detached retina can result in total loss of vision. Burns made by a laser focused to a small spot on the retina form scar tissue that
can hold the retina in place, salvaging the patient’s vision. Other light sources cannot be focused as precisely as a laser due to refractive dispersion
of different wavelengths. Similarly, laser surgery in the form of cutting or burning away tissue is made more accurate because laser output can be
very precisely focused and is preferentially absorbed because of its single wavelength. Depending upon what part or layer of the retina needs
repairing, the appropriate type of laser can be selected. For the repair of tears in the retina, a green argon laser is generally used. This light is
absorbed well by tissues containing blood, so coagulation or “welding” of the tear can be done.
Figure 30.40A detached retina is burned by a laser designed to focus on a small spot on the retina, the resulting scar tissue holding it in place. The lens of the eye is used to
focus the light, as is the device bringing the laser output to the eye.
In dentistry, the use of lasers is rising. Lasers are most commonly used for surgery on the soft tissue of the mouth. They can be used to remove
ulcers, stop bleeding, and reshape gum tissue. Their use in cutting into bones and teeth is not quite so common; here the erbium YAG (yttrium
aluminum garnet) laser is used.
The massive combination of lasers shown inFigure 30.41can be used to induce nuclear fusion, the energy source of the sun and hydrogen bombs.
Since lasers can produce very high power in very brief pulses, they can be used to focus an enormous amount of energy on a small glass sphere
containing fusion fuel. Not only does the incident energy increase the fuel temperature significantly so that fusion can occur, it also compresses the
fuel to great density, enhancing the probability of fusion. The compression or implosion is caused by the momentum of the impinging laser photons.
Figure 30.41This system of lasers at Lawrence Livermore Laboratory is used to ignite nuclear fusion. A tremendous burst of energy is focused on a small fuel pellet, which is
imploded to the high density and temperature needed to make the fusion reaction proceed. (credit: Lawrence Livermore National Laboratory, Lawrence Livermore National
Security, LLC, and the Department of Energy)
Music CDs are now so common that vinyl records are quaint antiquities. CDs (and DVDs) store information digitally and have a much larger
information-storage capacity than vinyl records. An entire encyclopedia can be stored on a single CD.Figure 30.42illustrates how the information is
stored and read from the CD. Pits made in the CD by a laser can be tiny and very accurately spaced to record digital information. These are read by
having an inexpensive solid-state infrared laser beam scatter from pits as the CD spins, revealing their digital pattern and the information encoded
upon them.
1086 CHAPTER 30 | ATOMIC PHYSICS
This content is available for free at http://cnx.org/content/col11406/1.7
Figure 30.42A CD has digital information stored in the form of laser-created pits on its surface. These in turn can be read by detecting the laser light scattered from the pit.
Large information capacity is possible because of the precision of the laser. Shorter-wavelength lasers enable greater storage capacity.
Holograms, such as those inFigure 30.43, are true three-dimensional images recorded on film by lasers. Holograms are used for amusement,
decoration on novelty items and magazine covers, security on credit cards and driver’s licenses (a laser and other equipment is needed to reproduce
them), and for serious three-dimensional information storage. You can see that a hologram is a true three-dimensional image, because objects
change relative position in the image when viewed from different angles.
Figure 30.43Credit cards commonly have holograms for logos, making them difficult to reproduce (credit: Dominic Alves, Flickr)
The namehologrammeans “entire picture” (from the Greekholo, as in holistic), because the image is three-dimensional.Holographyis the process
of producing holograms and, although they are recorded on photographic film, the process is quite different from normal photography. Holography
uses light interference or wave optics, whereas normal photography uses geometric optics.Figure 30.44shows one method of producing a
hologram. Coherent light from a laser is split by a mirror, with part of the light illuminating the object. The remainder, called the reference beam,
shines directly on a piece of film. Light scattered from the object interferes with the reference beam, producing constructive and destructive
interference. As a result, the exposed film looks foggy, but close examination reveals a complicated interference pattern stored on it. Where the
interference was constructive, the film (a negative actually) is darkened. Holography is sometimes called lensless photography, because it uses the
wave characteristics of light as contrasted to normal photography, which uses geometric optics and so requires lenses.
Figure 30.44Production of a hologram. Single-wavelength coherent light from a laser produces a well-defined interference pattern on a piece of film. The laser beam is split by
a partially silvered mirror, with part of the light illuminating the object and the remainder shining directly on the film.
Light falling on a hologram can form a three-dimensional image. The process is complicated in detail, but the basics can be understood as shown in
Figure 30.45, in which a laser of the same type that exposed the film is now used to illuminate it. The myriad tiny exposed regions of the film are dark
and block the light, while less exposed regions allow light to pass. The film thus acts much like a collection of diffraction gratings with various
spacings. Light passing through the hologram is diffracted in various directions, producing both real and virtual images of the object used to expose
CHAPTER 30 | ATOMIC PHYSICS S 1087
the film. The interference pattern is the same as that produced by the object. Moving your eye to various places in the interference pattern gives you
different perspectives, just as looking directly at the object would. The image thus looks like the object and is three-dimensional like the object.
Figure 30.45A transmission hologram is one that produces real and virtual images when a laser of the same type as that which exposed the hologram is passed through it.
Diffraction from various parts of the film produces the same interference pattern as the object that was used to expose it.
The hologram illustrated inFigure 30.45is a transmission hologram. Holograms that are viewed with reflected light, such as the white light
holograms on credit cards, are reflection holograms and are more common. White light holograms often appear a little blurry with rainbow edges,
because the diffraction patterns of various colors of light are at slightly different locations due to their different wavelengths. Further uses of
holography include all types of 3-D information storage, such as of statues in museums and engineering studies of structures and 3-D images of
human organs. Invented in the late 1940s by Dennis Gabor (1900–1970), who won the 1971 Nobel Prize in Physics for his work, holography became
far more practical with the development of the laser. Since lasers produce coherent single-wavelength light, their interference patterns are more
pronounced. The precision is so great that it is even possible to record numerous holograms on a single piece of film by just changing the angle of
the film for each successive image. This is how the holograms that move as you walk by them are produced—a kind of lensless movie.
In a similar way, in the medical field, holograms have allowed complete 3-D holographic displays of objects from a stack of images. Storing these
images for future use is relatively easy. With the use of an endoscope, high-resolution 3-D holographic images of internal organs and tissues can be
made.
30.6The Wave Nature of Matter Causes Quantization
After visiting some of the applications of different aspects of atomic physics, we now return to the basic theory that was built upon Bohr’s atom.
Einstein once said it was important to keep asking the questions we eventually teach children not to ask. Why is angular momentum quantized? You
already know the answer. Electrons have wave-like properties, as de Broglie later proposed. They can exist only where they interfere constructively,
and only certain orbits meet proper conditions, as we shall see in the next module.
Following Bohr’s initial work on the hydrogen atom, a decade was to pass before de Broglie proposed that matter has wave properties. The wave-like
properties of matter were subsequently confirmed by observations of electron interference when scattered from crystals. Electrons can exist only in
locations where they interfere constructively. How does this affect electrons in atomic orbits? When an electron is bound to an atom, its wavelength
must fit into a small space, something like a standing wave on a string. (SeeFigure 30.46.) Allowed orbits are those orbits in which an electron
constructively interferes with itself. Not all orbits produce constructive interference. Thus only certain orbits are allowed—the orbits are quantized.
Figure 30.46(a) Waves on a string have a wavelength related to the length of the string, allowing them to interfere constructively. (b) If we imagine the string bent into a closed
circle, we get a rough idea of how electrons in circular orbits can interfere constructively. (c) If the wavelength does not fit into the circumference, the electron interferes
destructively; it cannot exist in such an orbit.
For a circular orbit, constructive interference occurs when the electron’s wavelength fits neatly into the circumference, so that wave crests always
align with crests and wave troughs align with troughs, as shown inFigure 30.46(b). More precisely, when an integral multiple of the electron’s
wavelength equals the circumference of the orbit, constructive interference is obtained. In equation form, thecondition for constructive interference
and an allowed electron orbitis
(30.38)
n
=2πr
n
(n=1, 2, 3 ...),
where
λ
n
is the electron’s wavelength and
r
n
is the radius of that circular orbit. The de Broglie wavelength is
λ=h
/
p=h
/
mv
, and so here
λ=h
/
m
e
v
. Substituting this into the previous condition for constructive interference produces an interesting result:
1088 CHAPTER 30 | ATOMIC PHYSICS
This content is available for free at http://cnx.org/content/col11406/1.7
Documents you may be interested
Documents you may be interested