﻿

# c# display pdf in window : Add pages to an existing pdf control software platform web page windows asp.net web browser QFT-Schwartz6-part461

8.4 Vacuumdiagrams
Alotofthecontractions willresult indiagrams wheretheexternallines justconnectto o eachother,and
allthenon-trivialstuﬀappearsinbubbles. Therearealsodiagramsrepresentingthetimeorderedproduct
ofnothingΩ|Ωwhicharejustthebubbles. Itisnothardtorelatethesetwo,thenwecanfactoroutthe
vacuumﬂuctuationsΩ|Ωandjustconcentrateontheinterestingphysics.
Call the e internal l points x
i
and the external points y
i
. The e bubbles are just functions s of the e x
i
, for
example,somebubbleswouldgive
f(x
i
)=D
F
(x
i
,x
j
)
D
F
(x
k
,x
l
)
(8.69)
ThesefactoroutcompletelyfromanyFeynmandiagram
M=f
n
(x
j
)g(y
i
)
(8.70)
Soifwesumoverallpossiblebubblesforaﬁxedwayofconnectingtheexternallinesweget
M=[
n
f
n
(x
i
)]g(y
i
)
(8.71)
ButthissumoverbubblesisexactlyΩ|Ω.Sothethingwereallywanttocalculateis
Ω|φ(y
1
)
φ(y
i
)|Ω
Ω|Ω
=
0|T{φ(y
1
)
φ
I
(y
n
)}|0
nobubbles
(8.72)
Thisgetsridofallthebubbles.
Nowrememberhowwedeﬁnedthetransfermatrixby
S=1+iT
(8.73)
withtheM-matrix,whichisthethingwe’reultimatelytryingtocalculate,isdeﬁnedby
T =δ
4
(Σp)M
(8.74)
What contributes to o the 1? ? Well, , anything in which the ﬁnalstates s andinitialstates are identical l will
contributetothe1. Thisincludesnotonlythetreelevelgraph,at0thorderinperturbationtheory,where
the initialstates just movealongintoﬁnalstates. . Butalsomodiﬁcationsofthesegraphswhereabubble
comesoutofoneofthesetriviallines.
The M matrix only describes the interestingphysics,wheresome scatteringactually happens. . Thus
whenwecalculateMweonlyhavetoevaluatediagramsinwhichalltheinitialstatesandﬁnalstatesare
connectedtogether,where wecanget fromany of the external y
i
s toanyof theothers bymoving g along
linesinthegraph. Thus
M=0|T{φ(y
1
)
φ
I
(y
n
)}|0
fullyconnected
(8.75)
Thesearetheonlygraphsthathaveinterestingphysicsinthem. Everythingelseis s factoredoutandnor-
malizedawayas“nothinghappens”.
8.5 Tree-level φscattering
Nowlet’sdoanexampleinφ
3
theory. TaketheLagrangiantobe
L=−
1
2
φφ−
1
2
m2φ2+
g
3!
φ3
(8.76)
Wewanttocalculate
dΩ
(φφ→φφ)=
1
64π2E
cm
2
|M|
2
(8.77)
8.5 Tree-level l φscattering
61
Add pages to an existing pdf - insert pages into PDF file in C#.net, ASP.NET, MVC, Ajax, WinForms, WPF
Guide C# Users to Insert (Empty) PDF Page or Pages from a Supported File Format
add pdf pages to word; add page numbers to a pdf in preview
Add pages to an existing pdf - VB.NET PDF Page Insert Library: insert pages into PDF file in vb.net, ASP.NET, MVC, Ajax, WinForms, WPF
Easy to Use VB.NET APIs to Add a New Blank Page to PDF Document
whereremember
S=1+(2π)
4
δ
4
(Σp
i
)iM
(8.78)
Iftheincomingmomentaarep
1
andp
2
andtheoutgoingmomentaarep
3
andp
4
. Thereare3diagrams.
Theﬁrst
p
2
p
1
p
4
p
3
gives
iM
1
=(ig)Π(p
1
+p
2
)(ig)=(ig)
i
(p
1
+p
2
)2−m+iε
(ig)=
ig2
s−m2+iε
(8.79)
wheres=(p
1
+p
2
)
2
.
Thesecond
p
2
p
1
p
4
p
3
turnsinto
iM
2
=(ig)
i
(p
1
+p
3
)2−m2+iε
(ig)=
ig
2
t−m2+iε
(8.80)
wheret=(p
1
−p
3
)
2
.
Theﬁnaldiagram is
p
1
p
2
p
4
p
3
Thisevaluatesto
iM
3
=(ig)
i
(p
1
+p
3
)2−m2+iε
(ig)=
ig
2
u−m2+iε
(8.81)
whereu=(p
1
−p
4
)2.Sothesumis
dΩ
(φφ→φφ)=
g
4
64π2E
cm
2
1
s−m2
+
1
t−m2
+
1
u−m2
2
(8.82)
Wehavedroppedtheiε,whichisﬁneaslongass,t,uarenotequaltom2.Forthattohappen,theinter-
contributingonlyto1intheS-matrix. Theiε’swillbenecessaryforloops,butintree-leveldiagramsyou
canprettymuchignorethem.
8.5.1 Mandelstamvariables
These variables s,t,u arecalledMandelstam variables. . They y are agreat shorthand,usedalmost exclu-
sivelyin2→2scatteringandin1→3decays. For2→2scattering,withinitialmomenta p
1
andp
2
and
ﬁnalmomentap
3
andp
4
,theyaredeﬁnedby
s=(p
1
+p
2
)2=(p
3
+p
4
)2
(8.83)
t=(p
1
−p
3
)
2
=(p
2
−p
4
)
2
(8.84)
u=(p
1
−p
4
)
2
=(p
2
−p
3
)
2
(8.85)
62
FeynmanRules
C# PDF Page Delete Library: remove PDF pages in C#.net, ASP.NET
class applications to delete any unnecessary page from target existing PDF document file page, a series of pages, and random pages to be Add necessary references
C# PDF insert image Library: insert images into PDF in C#.net, ASP
Add multiple images to multipage PDF document in .NET WinForms. Ability to put image into specified PDF page position and save existing PDF file or output a new
add pages to pdf file; add multi page pdf to word document
Thesesatisfy
s+t+u=
m
i
2
(8.86)
wherem
i
aretheinvariantmassesoftheparticles.
Aswesayinthepreviousexample,s,tanducorrespondtoparticulardiagrams wherethepropagator
has invariant t mass s s, t t or r u. . So o we e say s-channel l for r annihilation n diagrams. . In n these e the e intermediate
statehasp
µ
2
=s>0. Thet-andu-channelstoscatteringdiagrams
p
2
p
1
p
4
p
3
s−channel
p
2
p
1
p
4
p
3
t−channel
p
1
p
2
p
4
p
3
u−channel
s,tanduaregreatbecausetheyareLorentzinvariant. SowecomputeM2(s,t,u)intheCM frame,and
thenwecaneasilyﬁndoutwhatitisinanyotherframe,forexampletheframeofthelabinwhichweare
doingtheexperiment. Soyousees,t,ucanbeveryusefulandwewillusethemalot!
8.6 Withderivativecouplings
Supposewehaveaninteractionwithderivativesinit,like
L=λφ
1
(∂
µ
φ
2
)(∂
µ
φ
3
)
(8.87)
where Ihaveincluded3diﬀerent scalarﬁelds for clarity. . Inmomentum m space,these ∂
µ
’s givefactors of
momenta.Butnowrememberthat
φ(x)=
d
3
p
(2π)3
1
p
a
p
e
ipx
+a
p
e
−ipx
(8.88)
Soiftheparticleisbeingcreated,thatisemergingfromavertex,it gets afactorof ip
µ
,andifit’sbeing
destroyed,thatisenteringfromavertex,itgetsafactorif −ip
µ
. Soa a − forincomingmomentumanda
+ for r outgoing g momentum. . Inthis s case, , it’s s quite e important t to o keep track of whether momentum m is
ﬂowingintooroutofthevertex.
Forexample,takethediagram
φ
2
φ
1
φ
3
φ
2
φ
1
8.6 Withderivativecouplings
63
VB.NET PDF insert image library: insert images into PDF in vb.net
Add images to any selected PDF page in VB.NET. Ability to put image into defined location on PDF page. Save changes to existing PDF file or output a new PDF file
add a page to a pdf file; add pages to pdf preview
VB.NET PDF Page Delete Library: remove PDF pages in vb.net, ASP.
Page: Delete Existing PDF Pages. |. Home ›› XDoc.PDF ›› VB Enable specified pages deleting from PDF in Visual Basic .NET class. Add necessary references:
add blank page to pdf preview; add page number to pdf document
Labelthe initialmomenta p
1
µ
andp
2
µ
andtheﬁnalmomentaare p
1
µ
and p
2
µ
. Theexchangemomenta a is
k
µ
=p
1
µ
+p
2
µ
=p
1
+p
2
. Thediagramgives
iM=
(
−iλ
)
2
(−ip
2
µ
)(ikµ)
i
k2
ip
2
ν′
(−ikν)
(8.89)
=−iλ
2
[p
2
p
1
+(p
2
)
2
][p
2
p
1
+(p
2
)
2
]
(p
1
+p
2
)2
(8.90)
Asacrosscheck,supposeweintegratedthistermbyparts
L=−λφ
3
[(∂
µ
φ
1
)(∂
µ
φ
2
)+φ
1
φ
2
]
(8.91)
Nowour 1diagram becomes 4diagrams,from the 2types of vertices onthe two o sides. . Butwecanjust
M=(iλ)
2
(−ip
2
µ
)(−ip
1
µ
)+(−ip
2
)
2
i
k2
ip
2
ν′

ip
1
ν
+
ip
2
2
(8.92)
=−iλ2
[p
2
p
1
+(p
2
)2][p
2
p
1
+(p
2
)2]
(p
1
+p
2
)2
(8.93)
Toseethatingeneral,wejusthavetoshowthattotalderivativesdon’tcontributetomatrixelements.
Supposewehaveaterm
L=∂
µ
1
φ
n
)
(8.94)
where there e are any y number r of ﬁelds in this term. . This s would give e a contributionfrom m the derivative
actingoneachﬁeld,whichgives acontributionthatﬁeldsmomenta. . Soifthevertex wouldhave givenV
(
incoming
p
µ
i
outgoing
p
µ
j
)V
(8.95)
butthesumofincomingmomentaisequaltothesum of outgoingmomenta,becausemomentumiscon-
servedatthevertex. Therefore,totalderivativesdon’thaveaneﬀect.
Tobeprecise,totalderivativesdon’thaveaneﬀectinperturbationtheory. Itturnsoutatermlike
F
˜
F≡ε
µναβ
F
µν
F
αβ
=∂
µ
µναβ
A
α
β
A
ν
)
(8.96)
is atotalderivative. . Thus s if we adda a term θF
˜
F to o the Lagrangian, nothinghappens. . That t is,nothing
happensinperturbationtheory. Itturnsoutthatthereareeﬀectsofthistermthat t willnevershowupin
totheviolationoftime-reversalinvariance(thestrongCPproblem),andatermlikeitmayberesponsible
forthe existenceof matter overantimatter intheuniverse. . Thesekinds s ofeﬀects arerelatedtopseudo-
particlescalledinstantonsandsphaleronsandareapurelynon-perturbativephenomenon.
8.7 Summary
Wesawthatinclassicalﬁeldtheory,thereiswaytosolvetheequationsofmotionusinggreensfunctions.
For example, , in the presence of a a classical source, this s led to o Feynman n diagrams s of the form for the
Coulombpotential
φ(r)∼A
0
e
2
r
∼−
e
2
k2
J
0
64
FeynmanRules
C# PDF File & Page Process Library SDK for C#.net, ASP.NET, MVC
Create Thumbnails. Page: Insert PDF Pages. Page: Delete Existing PDF Pages. Redact Text Content. Redact Images. Redact Pages. Annotation & Drawing. Add Sticky Note
add pages to pdf online; add page numbers to pdf using preview
VB: Add Password to PDF with Permission Settings Applied. This VB.NET example shows how to add PDF file password with access permission setting.
add and delete pages in pdf online; add page numbers to pdf document
Nowwehaveseenthesameamplitudereproducedwiththe“real”Feynmandiagrams
p
2
p
1
p
4
p
3
=
e
2
(p
3
−p
1
)2
=
e
2
k2
dσ∼M
2
e
4
k4
(8.97)
andthenweusedtheBornapproximationfromnon-relativisticquantummechanics
dσ∼V
˜
(k)
2
(8.98)
toextractV(k)=
e2
k2
. Butit’sthesamething–Coulomb’slawiscomingfromaLagrangian
L=−
1
2
AA+AJ
(8.99)
Fortheclassicalcase,wejusttookJ
µ
µ0
δ
(3)
(x),tosimulateapointcharge. FortheFeynmandiagram
case,wereplacedJbysomeinteractionJ=eφAφ,sothatthepointchargeisnowthoughtoflikeascalar
ﬁeld,whichisthenon-relativisticversionofanelectron.Diagrammatically
=J
1
k2
J =
p
2
p
1
p
4
p
3
I think it is helpful alsoto see e more e directly why the e Feynman rules andthe e classical perturbation
theoryarethesame. StartingwithaLagrangianwithacubicinteraction
L=hh+λh
3
+hJ
(8.100)
Inclassicalﬁeldtheory,wefoundaperturbationexpansionthatlookedlike
h =
+
+
=
1
J+
1
λ(
1
J)(
1
J)+
where
1
≡G(x)isshorthandfortheGreen’sfunctionwhichsolvestheclassicalequation
G(x)=δ(x)
(8.101)
Itis also o sometimes s calledaKernel. . The Feynmanrulesare the samething, but theGreen’sfunctionis
replacedbytheFeynmanpropagator
D
F
(x,0)=
0|T{φ(x)φ(0)
}
|0
=
d4k
(2π)4
i
k2+iε
eikx
(8.102)
ButthisisalsoaGreen’sfunction,satisfying
D
F
(x,0)=δ(x)
(8.103)
But the time ordering g makes s it a a Green’s s functionfor r scattering processes. . BothGreen’s s functions are
essentiallyjust
1
k2
–don’tlettheiεdistractyoufromthisessentialpoint.
8.7 Summary
65
C# Sample Code: Add Password to PDF with Permission Settings Applied in C#.NET. This example shows how to add PDF file password with access permission setting.
add page numbers to a pdf; add pdf pages to word document
C# PDF Page Rotate Library: rotate PDF page permanently in C#.net
page, it is also featured with the functions to merge PDF files using C# .NET, add new PDF page, delete certain PDF page, reorder existing PDF pages and split
WhataretheseGreen’sfunctions? Intheclassicalcase,solvingG(x)=δ(x) ) gives youG(x)whichis
atthespeedoflight(notfaster!),sinceisLorentzinvariant. SotheGreen’sfunctiontellsyouhowthis
movementpropagates.Inthequantumcase,wesawthattheﬁeldφ(x)createsaparticleatpositionx
φ(x)|p=e
ipx
(8.104)
Thus
0|φ(x)φ(0)
|
0
tellsyoutheamplitudeforaparticlecreatedat0togettox. That’sthesamething
as what the Green’s function n is telling you. . So o both of f these e things s are e propagators. . Obviously y the
quantumonecaninterferewithitselfandpairproducethingsanddoallkindsoffunquantummechanical
stuﬀthat the classicalﬁeld d can’t t do. . But t intheclassical limit, they are the same,and d wecansee e that
immediatelyintheequationsofmotion.
We also saw that the same amplitude comes from old-fashioned d perturbationtheory y (OFPT), where
thesumoverintermediatestatesincludesdiﬀerenttimeorderings
T
if
=
e
2
E
i
−E
n
(1)
+
e
2
E
i
−E
n
(2)
=
2e
2
E
γ
k2
(8.105)
Now2E
γ
goes into o the normalizationoftheﬁelds,inthe
1
p
factor, sothis s transitionmatrixelement,
T
if
isthesamethingasourLorentz-invariantmatrixelementM,butcalculatedathirdway,usingtime-
independentperturbationtheoryfromquantummechanics.Sothere’slotsofwaystodothesamecalcula-
tion.
• TheyaremanifestlyLorentzinvariant–usefulinrelativisticsettings
• 4-momentum m is conservedateachvertex,as opposedtojust3-momentum. Thisforces ustosacri-
ﬁce having g intermediate e particles be e on-shell. . But t that’s ok, since e intermediate e particles are not
• Theyaresystematicforhigher r ordercorrections,inwhichvirtualparticles arepair created. . Aswe
sawwithOppenheimer’s attempt at the Lambshift. . As s far asIknow,nobodyhasever beenable
tosortoutloopcorrections(renormalization)inOFPT
Finally,let’s break downthesteps thatledtotheFeynmanrules. . Westartedwithwantingtocalcu-
latecrosssectionsforscatteringprocesses. TheseweregivenbysomekinematicfactorstimesS-matrixele-
ments
dσ∼kinematics×f|S|i
2
(8.106)
Wefactoredouttheuninterestingpartof S-matrix
1−S=iδ4(Σp)M
(8.107)
dσ∼kinematics×M2
(8.108)
linesandtowritethematrixelementasatimeorderedproduct
M=p
i
2
e
ip
i
x
1
p
f
2
e
−ip
f
2
×0|T{φ
φ}|0
(8.109)
Thenthetimeorderedproductcouldbeexpressedinperturbationtheoryintermsofinteractionsandfree
particlepropagators
0|T{φ
φ}|0=
1
p
i
2
1
p
f
2
λ
n
1
k
1
2
λ
m
1
k
2
2
(8.110)
66
FeynmanRules
The propagators s from m the external legs canceled d the pfrom m LSZ and d the e phases give e delta a functions,
enforcingmomentumconservation.Intheendonlytheinterestingstuﬀcontributestothecrosssection
dσ∼kinematics×
λ
n
1
k
1
2
λ
m
1
k
2
2
(8.111)
Keepinmindthat allthemessyintermediatestepsingettingto o the Feynmanrulestook 30 years, from
1930-1960tobeworkedout. Soalthoughtheﬁnalseemssimple,andyoumightevenhaveguesseditfrom
tastic because they are not only simpleand d intuitive e (if youknow classical ﬁeldtheory), but also exact
andsystematic.
8.7 Summary
67
Chapter9
GaugeInvariance
9.1 Introduction
Upuntil now, we havedealt withgeneral features s ofquantum ﬁeldtheories. . For r example,wehaveseen
howtocalculate scatteringamplitudes startingfrom ageneralLagrangian. . Nowwe e willbegintoexplore
whattheLagrangianoftherealworldcouldpossiblybe. Then,ofcourse,wewilldiscusswhatitactually
cussionofspin. Spinshouldbefamiliarfromquantummechanics. Spinisaquantumnumber,labelledby
J,whichreferstorepresentationsoftherotationgroupSO(3). FermionshavehalfintegerspinJ=
1
2
,
3
2
,
andbosonshaveintegerspinJ=0,1,2,3,
.
Spin 1particles s arecritical l toquantum electrodynamics, becausethe photonis s spin1. . Butthey y are
alsoessentialtounderstanding quantum ﬁeldtheory ingeneral. . I I cannot emphasize enoughhow impor-
tantspin1ﬁeldsare–ithashardtodoanycalculationorstudyanytheoreticalquestioninquantumﬁeld
theory without t having g to deal with spin 1. . Inorder r to o understandspin 1, we ﬁrst have tounderstand
someoftherequirementsofaconsistentquantumﬁeldtheory.
9.2 UnitaryrepresentationsofthePoincaregroup
Inquantum ﬁeldtheory,we are interestedparticles, which h transform m covariantly under translations and
Lorentz transformations. . That t is, they shouldform representations s of the e Poincare e group. This means,
thereissomewaytowritethePoincaretransformationsothat
|ψ→P|ψ
(9.1)
Moreexplicitly,thereissomekindofbasiswecanchooseforourstates|ψ
,callit|ψ
i
sothat
i
→P
ij
j
(9.2)
Sowhenwesay representation wemeanawaytowritethetransformationsothatwhenit acts thebasis
closesintoitself.
Inaddition, we want unitary representations. . The e reasonfor this s is s that the things we compute in
ﬁeldtheoryarematrixelements
M=ψ
1
2
(9.3)
whichshouldbe Poincareinvariant. If M is Poincareinvariant, and|ψ
1
and|ψ
2
transform covariantly
underaPoincaretransformationP,weﬁnd
M=
ψ
1
|P
P|ψ
2
(9.4)
69
So we needP
P = = 1, , which is the deﬁnitionof unitarity. . There e are many more representations of the
Poincare groupthantheunitary ones, but the unitary ones are the only ones s we’ll beable e to compute
Poincareinvariantmatrixelementsfrom.
Asanaside,it is worthpointingoutherethat thereisanevenstronger requirementonphysicaltheo-
ries:theSmatrixmustbeunitary.RecallthattheS-matrixisdeﬁnedby
|f
=S|i
(9.5)
Saywestartwithsome normalizedstatei|i=1,meaning that the probability for ﬁndinganything at
timet=−∞isP=i|i
2
=1. Thenf|f=
i|S
S|i
. SowebetterhaveS
S=1,or elseweendupat
t=+∞withlessthanwestarted! ThusunitarityoftheS-matrixisequivalenttoconservationofproba-
bility, whichseems s to o be aproperty ofour r universeas far as anyonecantell. . We’llseeconsequences s of
unitaryofS lateron,butfornowlet’ssticktothediscussionofspin.
TheunitaryrepresentationsofthePoincare groupwereclassiﬁedfor theﬁrst timebyEugeneWigner
in1939. Asyoumightimagine,beforethatpeopledidn’treallyknowwhattheruleswereforconstructing
physicaltheories,and by y trial anderror they were comingacross allkinds of problems. . Wigner r showed
thatunitaryrepresentationsareuniquelyclassiﬁedbymassmandspinj. mcantakeanyvalueandspin
isspinof3D rotations. I’mnotgoingtogothroughtheproofhere,butitis doneingreatdetailinWein-
berg’sbook.
Therulesarethatforageneralmassm
0,aﬁeldofspinjhas2j+1polarizations,labeledbyσ=−
j,−j+1,
,j(youcanthinkof σ=j
z
ifyoulike). Soamassiveﬁeldofspin0hasonestate,spin
1
2
has
two,spin1hasthree,andsoon. Formasslessstates,allspinshaveonlytwopolarizations:σ=±j(mass-
lessspin0hasonlyonepolarizationsince j=−j). It’snothardtoprovethis usinggrouptheory,butwe
willcontentourselves withunderstandingitusingﬁeldsandLagrangians. . Again,seeWeinberg’sbookfor
details.
ThewholetrickinconstructingalocalLorentzinvariantﬁeldtheoryistoembedthesespinstatesinto
objectswithspacetimeindices. Thatiswewanttosqueezestatesofspin0,
1
2
,1,
3
2
,2etcintoscalars,vec-
tors, tensors, andspinors. That way we canwritedownsimple looking Lagrangians s anddevelopgeneral
methods for doingcalculations. . Thenwe e endupwithacomplication:tensorshave 0,4,16,64,
,4
n
ele-
ments (forgettinghalfintegerspinfor now),butspinstateshave0,3,5,7,
,2j+1physicaldegrees of
freedom. Theembeddingofthe2j+1statesinthe4
n
dimensionaltensorscausesallthetrouble. But in
the end, nobody y has s ﬁgured out a better way to do things s (although h recent t excitement t about twistors
indicatesthattheremaybeanalternative).
9.2.1 asimpleexample
We don’t needall thatfancy language tosee the problem. . Say y we werenaiveandguessedthata spin1
stateshouldhaveaLagrangianlike
L=V
µ
V
µ
(9.6)
Thefreeﬁeldsolutionsaresimplyplanewaves
V
µ
µ
e
ikx
(9.7)
whereforpolarizationε
µ
,any4-componentvectorisallowed. Wecanjustdeclarethatε
µ
transforms like
avector,then|V
µ
|
2
µ
2
isLorentzinvariant. However,ifwetrytomakeparticlesthisway,weﬁndtheir
normsare
V
µ
|V
µ
=ε
µ
2
0
2
−ε
1
2
−ε
2
2
−ε
3
2
(9.8)
ThenormisLorentzinvariant,butnotpositivedeﬁnite!
Wecan’tgetanywherewithatheorywithoutapositivedeﬁniteinnerproduct(norm).Forexample,if
Ihave aparticle withε=ε
0
=(1,0,0,0),thetotalprobabilityisjust |ε
2
|
2
withpolarizationε=ε
1
=(0,1,0,0)thetotalprobabilitywouldstillbe|ε2|=1. However r if Iconsider
thematthesametimeIwouldhaveastate|ψ
=|ε
0
⊕|ε
1
(atwoparticlestate),whosenormis
ψ|ψ
=
ε
0
0
+
ε
1
0
+
ε
0
1
+
ε
1
1
=1−1=0
(9.9)
70
Gauge Invariance