﻿

# c# pdf reader table : Cut pages from pdf reader control SDK system azure winforms html console Switchmode_Power_Supply_Handbook_3rd_edi66-part537

3.200
PART 3
16.4 THE THERMAL CIRCUIT AND EQUIVALENT
ELECTRICAL ANALOGUE
Figure 3.16.2a shows a typical cooling problem: a rectifier diode mounted on a heat
exchanger with an insulator between the case of the diode and the heat exchanger. In
this example, the temperature of the junction of the diode, when it is mounted on the
heat exchanger in a free air cooling environment, is to be calculated.
Figure 3.16.2b shows the thermal circuit, and Fig. 3.16.2c and d shows its electrical
analogue. The circuit design engineer will probably prefer to use the electrical analogue,
but before this can be done the analogue conversions must be considered.
16.4.1 Thermal Units and Equivalent Electrical Analogue
Thermal Unit Parameter
Units
Electrical Analogue
Units
Time t
s
Time t
s
Temperature difference T
d
°C
Potential difference V
d
V
Thermal resistance* R
Q
°C/W
Resistance R
7
Thermal conductivity* K
W/°C
Electrical Conductivity
S
Heat energy U
q
J
Electric energy U
J
Heat flow Q
J/s (W)
Current I
A
Heat capacity* C
h
J/°C
Capacitance C
F
*Of item or interface
16.4.2 Heat Generator (Analogous to Constant-Current Generator)
Consider Fig. 3.16.2b. At the left-hand side, heat is being deposited in the junction of the
diode at a constant rate of 10 J/s (10 W). Under steady-state conditions (when thermal
equilibrium has been established), the temperature of the junction is constant, and the
heat flowing away from the junction must equal the power being generated at the junction.
The temperature will continue to rise until this state of equilibrium has been established.
Hence, the constant power generator is analogous to the constant-current generator shown
in Fig. 3.16.2c, an important analogy.
16.4.3 Heat Flow Q (Analogous to Current Flow)
Since the junction is the hottest point in the circuit, the heat will flow from left to right to
reach the final infinite heat sink, which is the ambient free air at a temperature of 20°C.
A thermal shunt (heat conductor) is being used to conduct the heat to the remote heat
exchanger. The conduction rate Q is defined from Fourier’s law as
Q
AT
LR
d

Q
where Q  heat flow, J/s (W)
T
d
temperature difference between the ends of the shunt, °C
A cross-sectional area
L length of conductor
R
Q
thermal resistance
Cut pages from pdf reader - remove PDF pages in C#.net, ASP.NET, MVC, Ajax, WinForms, WPF
Provides Users with Mature Document Manipulating Function for Deleting PDF Pages
delete pages from a pdf; cut pages from pdf file
Cut pages from pdf reader - VB.NET PDF Page Delete Library: remove PDF pages in vb.net, ASP.NET, MVC, Ajax, WinForms, WPF
Visual Basic Sample Codes to Delete PDF Document Page in .NET
delete a page from a pdf acrobat; delete pages of pdf preview
16. THERMAL MANAGEMENT
3.201
FIG. 3.16.2(a) Thermal resistance example: stud-mounted D04 diode on finned heat exchanger.
(b) Example of thermal resistance circuit. (c)Example of electrical analogue of thermal resistance
circuit.(d) Thermal resistance model, showing the effect of thermal capacity (specific heat of heat
shunts and heat sinks) and local heat loss.
C# PDF Page Extract Library: copy, paste, cut PDF pages in C#.net
C#.NET PDF Library - Copy and Paste PDF Pages in C#.NET. Easy to C#.NET Sample Code: Copy and Paste PDF Pages Using C#.NET. C# programming
delete a page from a pdf without acrobat; delete page pdf acrobat reader
VB.NET PDF Page Extract Library: copy, paste, cut PDF pages in vb.
C:\test1.pdf") Dim pdf2 As PDFDocument = New PDFDocument("C:\test2.pdf") Dim pageindexes = New Integer() {1, 2, 4} Dim pages = pdf.DuplicatePage(pageindexes
delete pages from pdf acrobat; delete pages in pdf reader
3.202
PART 3
Since A and L are mechanical constants, in this example this formulia reduces to
Q
T
R
I
V
R
d
s

Q
which is analogous to
Note: This law applies only to normal solid thermal conductors. The specially designed
“heat pipes” that depend on a change of state (i.e., latent heat of vaporization of the internal
coolant) for their heat conduction effect will have a very nonlinear thermal resistance, and
will not follow this equation.
In heat pipes, the thermal resistance R
Q
will go very low at the transition temperature.
This must be considered when using this type of thermal shunt.
For the more commonly used heat sink metals, the variation of thermal resistance with
temperature is negligible at normal semiconductor temperatures. It has been neglected in
these examples.
16.4.4 Thermal Resistance R
.
(Analogous to Resistance R)
In the above example, the junction is dissipating 10 J/s (and hence Q  10 W). This heat
flow (analogous  to a current flow of 10 A) will develop a temperature difference T
d
between each interface, depending on the thermal resistance R
Q
between each interface
and the heat flow.
(The electrical analogue shows a potential difference V between each interface, depend-
ing on the resistance R between each interface and the current flow.)
When steady-state conditions have been established, the temperatures at the various
interfaces may be calculated by considering the heat flow and thermal resistances in the
heat transfer path.
In this example, it is assumed that the free air, by virtue of its nearly infinite bulk and
free flow, will remain at a constant ambient temperature of 20°C at the surface of the
finned heat exchanger. Since the temperature at this interface is constant, the temperature
of the other junctions with respect to this interface can be calculated from right to left in
Fig. 3.16.2b.
(The electrical analogue of a free air temperature of 20°C is a ground potential of 20 V,
in this example.)
There are three thermal resistors to be considered in Fig. 3.16.2b. First (and usually
the most important, because it is the largest), there is the thermal resistance of the free
air interface itself, that is, from the finned heat exchanger surface to the surrounding
free air. (This is designated R
h a
.)
Second, there is the thermal resistance from the finned heat exchanger surface, through
the mica insulator, to the case of the diode. (This is designated R
c-h
.)
Finally, there is the thermal resistance from the case of the diode to the internal junc-
tion. (This is designated R
j c
.)
(The electrical analogue shows resistors R3, R2, and R1 in the same positions.)
For convenience, the thermal resistance of each section will be considered separately,
starting with the heat exchanger interface.
From the manufacturer’s data, the finned heat exchanger has a thermal resistance R
h-a
of 4°C/W in free air.
The diode is mounted on an insulator to provide electrical isolation. This mica insulator
also has a defined thermal resistance between the diode case and the mounting surface of
the heat sink R
c h
of 0.5°C/W.
Finally, from the diode mounting surface to the internal junction (where the heat is being
generated), the resistance R
j c
is given in the manufacturer’s data as 0.5°C/W for this diode.
(The electrical analogues are 4 7, 0.5 7, and 0.5 7.)
VB.NET PDF copy, paste image library: copy, paste, cut PDF images
Copy, paste and cut PDF image while preview without adobe reader component installed. Image resize function allows VB.NET users to zoom and crop image.
delete pages on pdf online; copy page from pdf
C# PDF copy, paste image Library: copy, paste, cut PDF images in
C#.NET PDF SDK - Copy, Paste, Cut PDF Image in C#.NET. C#.NET Demo Code: Cut Image in PDF Page in C#.NET. PDF image cutting is similar to image deleting.
delete pages pdf preview; add remove pages from pdf
16. THERMAL MANAGEMENT
3.203
Hence, the total thermal resistance R
Q
from junction to free air is the sum of these three,
or 4   0.5   0.5  5°C/W (or 5 7), and this total resistance (R
Q
) is used to calculate the total
temperature difference T between the junction and free air.
From the previous equation,
T
QR
d

r
n
Q
10 5 50 C
where T
d
temperature rise (above ambient), °C
Q dissipation in junction, W
R
Q
total thermal resistance, junction to free air, °C/W
Electrical analogue:
V
IR

r
10 5 50 V
Since T
d
is the temperature rise above ambient, the junction temperature will be 70°C, and
the analogous voltage would be 70 V.
Clearly the electrical analogue is hardly necessary in this simple example; however,
it serves to demonstrate the principle and will be found very useful in more complex
applications. The engineer will make few errors in thermal design if this simple model is
kept in focus.
16.5 HEAT CAPACITY C
h
(ANALOGOUS
TO CAPACITANCE C)
The concept of heat capacity tends to get little attention in thermal design, although it is
significant in magnitude. It is the confusion between thermal capacity (specific heat) and
true thermal resistance that leads to a common error. It is often assumed that a copper
heat exchanger will perform better than, say, an aluminum heat exchanger with the same
surface area. This error stems from the fact that the copper does not appear to get hot as
quickly as the aluminum. In fact, what is being observed here is the effect of the larger
thermal capacity of the copper. The copper heat exchanger will eventually end up at the
same temperature. (Although copper is a better heat conductor, it is the surface area which
predominates and defines the thermal resistance.)
This effect will become clear from the more complete model shown in Fig. 3.16.2d.
The various thermal capacitors, C
hd
, C
hi
, and C
hs
, have been included, together with the
previously neglected direct heat losses from the surfaces of the various bodies, R
Qd
and R
Qi
.
The heat losses from the surface of the components, R
Qd
and R
Qi
, are normally neglected,
as the direct heat loss is negligible because of the small exposed area of the diode and
insulator. However, this is not the case with the thermal capacitors C
hd
, C
hi
, and C
hs
. In the
example shown, the electrical analogue capacitance will effectively be hundreds of farads.
(Even at 10 W input it can take several minutes for the heat exchanger to reach final thermal
stability.)
From Table 3.16.1, it will be noted that the heat capacity of common heat conductors
can be very large (for example, 57.5 J/°C for a 1-in copper cube). Hence, for the example
shown in Fig. 3.16.2, if 10 in3 of copper were used in the construction of the heat exchanger
(quite realistic), then with a heat input of 10 W (10 J/s), it would take 57 s for the tempera-
ture to increase by only one degree. Thus, it would take several minutes to reach the final
VB.NET PDF Page Insert Library: insert pages into PDF file in vb.
Page: Insert PDF Pages. |. Home ›› XDoc.PDF ›› VB.NET PDF: Insert PDF Page. Add and Insert Multiple PDF Pages to PDF Document Using VB.
delete page in pdf file; delete pdf pages ipad
C# PDF Page Insert Library: insert pages into PDF file in C#.net
doc2.Save(outPutFilePath); Add and Insert Multiple PDF Pages to PDF Document Using C#. Add and Insert Blank Pages to PDF File in C#.NET.
copy pages from pdf to word; delete page from pdf document
3.204
PART 3
temperature. The heat sink’s thermal mass (thermal capacitance) will not affect the value of
the steady-state temperature, only the time taken to reach thermal stability.
TABLE 3.16.1 Heat Storage Capacity and Thermal Resistance of
Common Heat Exchanger Metals
Common heat
sink materials
Heat storage
capacity, J/in3/°C
Thermal resistance
(block I" r I"),
R
Q
, °C/W
Aluminum (6061)
40.5
0.23
Copper 110
57.5
0.10
Steel C1040
63
0.84
Brass 360
50
0.34
However, if the heat input is of a transient nature, with a small duty ratio (allowing
plenty of cooling time), then the larger thermal capacity (or greater specific heat) will be
effective in reducing the maximum variation in temperature during a thermal load transient.
Since thermal capacity will not affect the final steady-state temperature, it is not considered
further in this example.
16.6 CALCULATING JUNCTION TEMPERATURE
In the previous example, the diode junction temperature was easily established because the
dissipation was known. However, in practice the dissipation in switchmode applications
can often be very difficult to establish, as some factors, like diode reverse recovery losses,
can be difficult to establish with any real degree of confidence. Under these conditions, any
known thermal resistance in the heat conduction path can be used to establish the heat flow
(and hence the junction dissipation) by measuring the temperature differential across the
interface of the known thermal resistance.
Consider again the electrical analogue shown in Fig. 3.16.2c. In the same way that the
voltage difference between two parts of a circuit is given by IR, the temperature difference
is given by the product of heat flow in joules per second (watts) and thermal resistance.
For the example shown in Fig. 3.16.2b and c, the heat flow is known, and the temperature
difference for each element of the thermal shunt can be calculated as follows:
\$T Q R
j Q
where \$T  temperature difference (across element)
Q
j
heat flow (power dissipated at the junction)
R
Q
thermal resistance (of element)
The temperatures at the various interfaces may be calculated as follows:
Temperature of heat sink surface T
h
:
T
QR
T
h
j h a

r

n
(
)
(
)
amb
C
10 4
20 60
where R
h a
heat exchanger to ambient thermal resistance
T
amb
ambient air temperature, °C
C# PDF remove image library: remove, delete images from PDF in C#.
NET comment annotate PDF, VB.NET delete PDF pages, VB.NET Able to cut and paste image into another PDF PDF image in preview without adobe PDF reader component.
delete page from pdf file; copy pages from pdf to new pdf
How to C#: Basic SDK Concept of XDoc.PDF for .NET
example, you may easily create, load, combine, and split PDF file(s), and add, create, insert, delete, re-order, copy, paste, cut, rotate, and save PDF page(s
delete pages from pdf; delete blank pages in pdf files
16. THERMAL MANAGEMENT
3.205
Temperature of diode surface T
ds
:
T
Q R
R
T
ds
j
h a
c h

r

n
(
)
[
(
.)]
amb
C
10
4 0 5
20 65
where R
c h
thermal resistance from device case to heat exchanger surface
The junction temperature T
j
will be the total temperature difference T
d
across all the various
series heat shunt elements, plus the ambient temperature; hence
T
Q R
R
R
T
j
j
h a
c h
j c

r
(
)
[
(
.
. )]
amb
10
4 0 5 0 5

n
20 70 C
It has been shown that if the power dissipated in the junction and the thermal resistance to
the heat shunts or heat exchanger are known, then the junction and interface temperatures
can be calculated. Clearly, if the temperature of the heat exchanger is measured and the
thermal resistance is known, then the heat flow and junction dissipation can be calculated.
16.7 CALCULATING THE HEAT SINK SIZE
In many practical cases the power dissipated in the junction will be known, and the thermal
resistance of the heat exchanger will need to be calculated for a defined junction tempera-
ture rise. The design procedure would be as follows.
Assume that a finned heat exchanger as shown in Fig. 3.16.3 is to be used to free-air
cool a T0-3 transistor dissipating 20 W, and that the junction temperature is not to exceed
136°C when the ambient air temperature is 50°C.
FIG. 3.16.3 Thermal  resistance  example, showing a T03  transistor on  a
finned heat exchanger.
3.206
PART 3
From the manufacturer’s data, the thermal resistance between junction and case of the T0-3
transistor, R
j-c
, is 1.5°C/W. An insulating mica washer is also to be used, and this has a ther-
mal resistance of, say, 0.4°C/W. (The thermal resistance of the insulator may be established
from the basic material properties in Table 3.16.2 or from Table 3.16.3.)
TABLE 3.16.2 ThermalResistance, Maximum Operation Temperatures, and Dielectric Constant of
Common Insulating Materials
Common
insulating
materials
Thermal resistance
(block 1" r 1"),
°C/W
Maximum
temperature, °C
Dielectric
constant, 25°C
Mica
62–91
550
6.5–8.7
Aluminum oxide
1.43
1700
8.9
Beryllium oxide*
0.15–0.27
2149
6.5
Polyimide plastic
270
400
3.5
Silicone rubber
151
180
1.6
Thermal epoxy
25–50
90
6
Still air
1430
1
*Warning: Beryllium oxide is highly toxic if fragmented into small particles.
TABLE 3.16.3 Typical Thermal Resistance of Case to Mounting Surface of T0–3 and T0–220
Transistors When Using Standard Insulator Kits and Materials with Thermal Mounting Compound
Standard
insulator kits
Device
type, case
Insulator
thickness, in
Typical thermal
resistance
R
c h,
°C/W
Maximum working
temperature, °C
Mica
T0-3
0.006
0.4
200
T0-220
0.006
1.8
200
Aluminum oxide
T0-3
0.062
0.34
200
T0-220
0.062
1.53
200
Beryllium oxide
T0-3
0.062
0.2
200
T0-220
0.062
1.0
200
Polyimide plastic
(Thermofilm)
T0-3
T0-220
0.002
0.002
0.55
2.3
200
200
Silicone rubber
T0-3
0.008
1.0
180
T0-220
0.008
4.5
180
The maximum temperature permitted at the interface of the insulator and the heat sink
when the junction temperature is 136°C can be calculated as follows:
The thermal resistance R
j h
from junction to insulator-heat exchanger interface is
R
R
R
j h
j c
c h

n
15 0 4 1 9
.
.
. C/W
The temperature difference \$T between the junction and the heat exchanger interface is the
product of the thermal resistance and heat flow Q:
\$

r

n
T R Q
j h
19 20 38
.
C
16. THERMAL MANAGEMENT
3.207
The temperature at the heat exchanger interface T
h
will be T
j(max)
, less the difference \$T
from junction to heat exchanger:
T
T
T
h

\$

n
max
136 38 98 C
The maximum permitted temperature difference \$T
h
from the heat exchanger surface to
free air at 50°C is
\$

n
T
T
T
h
h
amb
C
98 50 48
The thermal resistance of the heat exchanger, R
ha
, is the temperature difference divided by
the heat flow:
R
T
Q
ha
h

\$

n
48
20
2.4 C/W
Hence a heat exchanger extrusion of 2.4°C/W will be chosen. The manufacturer’s data
provide information on the heat exchanger thermal resistance for various extrusions or heat
exchanger designs, and a suitable size can be calculated.
16.8 METHODS OF OPTIMIZING THERMAL
CONDUCTIVITY PATHS, AND WHERE TO USE
“THERMAL CONDUCTIVE JOINT COMPOUND”
In the example shown in Fig. 3.16.3, the largest thermal resistance is from the heat sink to
free air, R
h a
. (This will often be the case with convected cooling.) Since the total thermal
resistance of the heat shunt from the junction to free air is the sum of the various elements,
this final large thermal resistance swamps the effects of all the others. For example, a
50% increase or decrease in the resistance of the mounting arrangements would affect the
temperature at the junction by only 2.5°C. Hence, in this example, there would be little
advantage to using thermal compound to reduce the thermal resistance of the mounting
arrangements—the effect would be negligible.
It is interesting to note from the above example that the messy (and expensive) practice
of using thermal mounting compound on small air-cooled heat exchangers is probably not
very effective in most cases.
The designer should locate the interface with maximum thermal resistance and reduce
this to a value compatible with the other elements in the path. In the above example, a large
improvement would come from an increase in the heat exchanger surface area or an increase
in cooling air flow, but not very much from a reduced mounting interface resistance.
In the second example, Fig. 3.16.4a, a highly dissipating transistor (for example, an active
load) is to be mounted on an efficient water-cooled heat exchanger. This heat exchanger
can be considered an infinite heat sink. (For practical purposes, it may be assumed that the
surface temperature of the heat exchanger will not exceed 20°C regardless of how much
heat is conducted to it.)
Assume that the transistor dissipation is 100 W. The equivalent thermal resistance dia-
gram is shown in Fig. 3.16.4b. In this example, the junction-to-case thermal resistance is
0.5°C/W, and the case-to-heat-sink thermal resistance (because an insulator is used) is
higher, 1°C/W. (Since the heat exchanger in this example is the infinite heat sink, its thermal
resistance is zero.)