how to display pdf file in asp net using c# : Get text from pdf online software application cloud windows html wpf class Mathematics-Part1-Class-126-part1891

INVERSE TRIGONOMETRIC FUNCTIONS     47
Therefore, 
–1
2
1
cot
x −1
= cot
–1
(cot θ) = θ = sec
–1
x, which is the simplest form.
Example 7 Prove that tan
–1
x + 
–1
2
2
tan
1
x
−x
= tan
–1
3
2
3
1 3
x x
x
1
| |
3
x <
Solution Let x = tan θ. Then θ = tan
–1
x. We have
R.H.S. = 
3
3
–1
–1
2
2
3
3tan
tan
tan
tan
1 3
1 3tan
x x
x
θ−
θ
=
θ
=tan
–1
(tan3θ) = 3θ = 3tan
–1 
x = tan
–1
x + 2 tan
–1
x
=tan
–1
x + tan
–1
2
2
1
x
−x
= L.H.S. (Why?)
Example 8 Find the value of  cos (sec
–1
x + cosec
–1
x), | x | ≥ 1
Solution We have cos (sec
–1
x + cosec
–1
x) = cos 
2
π
 
 
 
= 0
EXERCISE 2.2
Prove the following:
1. 3sin
–1
x = sin
–1
(3x – 4x
3
), 
1 1
– ,
2 2
x
2. 3cos
–1
x = cos
–1
(4x
– 3x), 
1
,1
2
x
3. tan
–1
1
1
2
7
1
tan
tan
11
24
2
+
=
4.
1
1
1
1
1
31
2tan
tan
tan
2
7
17
+
=
Write the following functions in the simplest form:
5.
2
1
1
1
tan
x
x
+
, x ≠ 0
6.
1
2
1
tan
1
x
, |x | > 1
7.
1
1 cos
tan
1 cos
x
x
+
, 0 < x <  π
8.
1
cos
sin
tan
cos
sin
x
x
x
x
+
, 0 < x< π
Get text from pdf online - extract text content from PDF file in C#.net, ASP.NET, MVC, Ajax, WinForms, WPF
Feel Free to Extract Text from PDF Page, Page Region or the Whole PDF File
copy paste pdf text; extract pdf text to word
Get text from pdf online - VB.NET PDF Text Extract Library: extract text content from PDF file in vb.net, ASP.NET, MVC, Ajax, WinForms, WPF
How to Extract Text from PDF with VB.NET Sample Codes in .NET Application
export highlighted text from pdf to word; extract text from pdf file using java
48
MATHEMATICS
9.
1
2
2
tan
x
a
x
, |x | < a
10.
2
3
1
3
2
3
tan
3
a x x
a
ax
, a > 0; 
3
3
< <
a
a
x
Find the values of each of the following:
11.
–1
–1
1
tan 2 cos 2sin
2
12. cot (tan
–1
a  + cot
–1
a)
13.
2
–1
–1
2
2
1
2
1
tan
sin
cos
2
1
1
x
y
x
y
+
+
+
, | x| < 1, y > 0 and xy < 1
14. If  sin 
–1
–1
1
sin
cos
1
5
x
+
=
, then find the value of x
15. If 
–1
–1
1
1
tan
tan
2
2 4
x
x
x
x
+
π
+
=
+
, then find the value of x
Find the values of each of the expressions in Exercises 16 to 18.
16.
–1
2
sin
sin
3
π
17.
–1
3
tan
tan
4
π
18.
–1
–1
3
3
tan sin
cot
5
2
+
19.
1
7
cos
cos
is equal to
6
π
(A)
7
6
π
(B)
5
6
π
(C)
3
π
(D)
6
π
20.
1
1
sin
sin ( )
3
2
π
is equal to
(A)
1
2
(B)
1
3
(C)
1
4
(D) 1
21.
1
1
tan
3 cot ( 3)
is equal to
(A) π
(B)
2
π
(C) 0
(D)
2 3
C# PDF insert text Library: insert text into PDF content in C#.net
String inputFilePath = Program.RootPath + "\\" 1.pdf"; PDFDocument doc = new PDFDocument(inputFilePath); // get a text manager from the document
copy pdf text to word with formatting; copy pdf text to word document
VB.NET PDF Annotate Library: Draw, edit PDF annotation, markups in
with a great .NET solution to annotate .pdf file with both text & graphics. From this page, you will get a simple VB.NET online PDF annotation tutorial.
delete text from pdf file; copy paste text pdf
INVERSE TRIGONOMETRIC FUNCTIONS     49
Miscellaneous Examples
Example 9 Find the value of 
1
3
sin (sin
)
5
π
Solution We know that 
1
sin (sin x)
x
x
=
. Therefore, 
1
3
3
sin (sin
)
5
5
π
π
=
But
3
,
5
2 2
π
π π
∉ −
, which is the principal branch of sin
–1
x
However
3
3
2
sin ( ) sin(
) sin
5
5
5
π
π
π
=
π−
=
and 
2
,
5
2 2
π
π π
∈ −
Therefore
1
1
3
2
2
sin (sin
) sin (sin
)
5
5
5
π
π
π
=
=
Example 10 Show that 
1
1
1
3
8
84
sin
sin
cos
5
17
85
=
Solution Let 
1
3
sin
5
x
=
and  
1
8
sin
17
y
=
Therefore
3
sin
5
x=
and 
8
sin
17
y=
Now
2
9
4
cos
1 sin
1
25
5
x
x
=
=
=
(Why?)
and
2
64
15
cos
1 sin
1
289 17
y
y
=
=
=
We have
cos (x–y) = cos x cos y + sin x sin y
=
4 15 3
8
84
5 17 5 17 85
×
+ ×
=
Therefore
1
84
cos
85
x y
 
− =
 
 
Hence
1
1
1
3
8
84
sin
sin
cos
5
17
85
=
VB.NET PDF insert text library: insert text into PDF content in vb
Dim inputFilePath As String = Program.RootPath + "\\" 1.pdf" Dim doc As PDFDocument = New PDFDocument(inputFilePath) ' get a text manager from the
copy and paste text from pdf to excel; copy text from pdf reader
C# PDF Image Extract Library: Select, copy, paste PDF images in C#
NET framework application with trial SDK components and online C# class users are able to extract image from PDF document page and get image information
extract pdf text to excel; copying text from pdf to word
50
MATHEMATICS
Example 11 Show that 
1
1
1
12
4
63
sin
cos
tan
13
5
16
+
+
Solution Let 
1
1
1
12
4
63
sin
, cos
,tan
13
5
16
x
y
z
=
=
=
Then
12
4
63
sin
, cos
, tan
13
5
16
x
y
z
=
=
=
Therefore
5
3
12
3
cos
,sin
,tan
and tan
13
5
5
4
x
y
x
y
=
=
=
=
We have
tan
tan
tan(
)
1 tan tan
x
y
x y
x
y
+
+
=
12 3
63
5 4
12 3
16
1
5 4
+
=
=−
− ×
Hence
tan(
)
tan
x y
z
+
=−
i.e.,
tan (x + y) = tan (–z) or tan (x + y) = tan (π – z)
Therefore
x + y = –  z  or  x + y = π – z
Since
x, y and z are positive, x + y ≠ – z  (Why?)
Hence
x + y + z = π  or 
–1
–1
–1
12
4
63
sin
cos
tan
13
5
16
+
+
Example 12 Simplify 
–1
cos
sin
tan
cos
sin
a
x b
x
b
x a
x
+
, if 
a
b
tan x > –1
Solution We have,
–1
cos
sin
tan
cos
sin
a
x b
x
b
x a
x
+
=
–1
cos
sin
cos
tan
cos
sin
cos
a
x b
x
b
x
b
x a
x
b
x
+
–1
tan
tan
1
tan
a
x
b
a
x
b
+
=
–1
–1
tan
tan (tan )
a
x
b
–1
tan
a
x
b
C# PDF Annotate Library: Draw, edit PDF annotation, markups in C#.
box to PDF and edit font size and color in text box field using RasterEdge.XDoc.PDF; Note: When you get the error "Could not load file or assembly 'RasterEdge
copy text from protected pdf to word; extract highlighted text from pdf
VB.NET PDF: Get Started with PDF Library
C#.NET rotate PDF pages, C#.NET search text in PDF Viewer, C# Online Dicom Viewer, C# Online Jpeg images VB.NET PDF: Get Started with .NET PDF Library Using VB.
cut text pdf; extract text from pdf image
INVERSE TRIGONOMETRIC FUNCTIONS     51
Example 13 Solve tan
–1
2x + tan
–1
3x = 
4
π
Solution We have tan
–1
2x + tan
–1
3x = 
4
π
or
–1
2
3
tan
1 2
3
x
x
x
x
+
×
=
4
π
i.e.
–1
2
5
tan
1 6
x
x
=
4
π
Therefore
2
5
1 6
x
− x
=
tan
1
4
π
=
or
6x
2
+ 5x – 1 = 0 i.e., (6x – 1) (x + 1) = 0
which gives
x =
1
6
or x = – 1.
Since x = – 1 does not satisfy the equation, as the L.H.S. of the equation becomes
negative, 
1
6
x=
is the only solution of the given equation.
Miscellaneous Exercise on Chapter 2
Find the value of the following:
1.
–1
13
cos
cos
6
π
2.
–1
7
tan
tan
6
π
Prove that
3.
–1
–1
3
24
2sin
tan
5
7
=
4.
–1
–1
–1
8
3
77
sin
sin
tan
17
5
36
+
=
5.
–1
–1
–1
4
12
33
cos
cos
cos
5
13
65
+
=
6.
–1
–1
–1
12
3
56
cos
sin
sin
13
5
65
+
=
7.
–1
–1
–1
63
5
3
tan
sin
cos
16
13
5
=
+
8.
–1
1
1
1
1
1
1
1
tan
tan
tan
tan
5
7
3
8 4
π
+
+
+
=
C#: Use OCR SDK Library to Get Image and Document Text
C#: Use OCR SDK Library to Get Image and Document Text. C#.NET Online Tutorial for How to Extract Text from Tiff, Jpeg, Png, Gif, Bmp, and Scanned PDF Files.
get text from pdf into excel; extract text from pdf
VB.NET PDF Page Extract Library: copy, paste, cut PDF pages in vb.
Security PDF component download. Online source codes for quick evaluation in VB.NET class. You can easily get pages from a PDF file, and then use these
copy text from pdf with formatting; export highlighted text from pdf to word
52
MATHEMATICS
Prove that
9.
–1
–1
1
1
tan
cos
2
1
x
x
x
=
+
, x ∈ [0, 1]
10.
–1
1 sin
1 sin
cot
2
1 sin
1 sin
x
x
x
x
x
+
+
=
+
0,
4
x
π
11.
–1
–1
1
1
1
tan
cos
4
2
1
1
x
x
x
x
x
+ −
π
= −
+ +
1
1
2
x
≤ ≤
[Hint: Put x = cos 2θ]
12.
1
1
9
9
1 9
2 2
sin
sin
8
4
3 4
3
π
=
Solve the following equations:
13. 2tan
–1
(cos  x) = tan
–1
(2 cosec x) 14.
–1
–1
1
1
tan
tan
,(
0)
1
2
x
x x
x
=
>
+
15. sin (tan
–1 
x), | x| < 1 is equal to
(A)
2
1
x
−x
(B)
2
1
1−x
(C)
2
1
1+x
+
(D)
2
1
x
+x
16. sin
–1 
(1 – x) – 2 sin
–1 
x = 
2
π
, then x is equal to
(A) 0, 
1
2
(B) 1, 
1
2
(C) 0
(D)
1
2
17.
1
1
tan
tan
x
x y
y
x y
 
 
+
 
is equal to
(A)
2
π
(B)
3
π
(C)
4
π
(D)
3
4
− π
INVERSE TRIGONOMETRIC FUNCTIONS     53
Summary
Î
The domains and ranges (principal value branches) of inverse trigonometric
functions are given in the following table:
Functions
Domain
Range
(Principal Value  Branches)
y = sin
–1
x
[–1, 1]
,
2 2
−π π
y = cos
–1
x
[–1, 1]
[0, π]
y = cosec
–1
x
R – (–1,1)
,
2 2
−π π
– {0}
y = sec
–1
x
R – (–1, 1)
[0, π] – 
{ }
2
π
y = tan
–1
x
R
,
2 2
π π
y = cot
–1
x
R
(0, π)
Î
sin
–1
x should not be confused  with (sin
x)
–1
. In  fact (sin x)
–1
1
sin x
and
similarly for other trigonometric functions.
Î
The value of an inverse trigonometric functions which lies in its principal
value  branch is  called  the principal  value of  that  inverse  trigonometric
functions.
For suitable values of domain, we have
Î
y = sin
–1
x ⇒ x = sin y
Î
x = sin y  ⇒ y = sin
–1
x
Î
sin (sin
–1
x) = x
Î
sin
–1
(sin x) =  x
Î
sin
–1
1
x
= cosec
–1 
x
Î
cos
–1 
(–x)  = π  – cos
–1 
x
Î
cos
–1
1
x
=  sec
–1
x
Î
cot
–1
(–x) = π  – cot
–1 
x
Î
tan
–1
1
x
= cot
–1
x
Î
sec
–1
(–x) = π  – sec
–1 
x
54
MATHEMATICS
Î
sin
–1
(–x) =  – sin
–1
x
Î
tan
–1
(–x) = – tan
–1
x
Î
tan
–1 
x + cot
–1 
x = 
2
π
Î
cosec
–1
(–x) =  –  cosec
–1
x
Î
sin
–1
x + cos
–1
x = 
2
π
Î
cosec
–1 
x +  sec
–1 
x = 
2
π
Î
tan
–1
x + tan
–1
y = tan
–1
1
x y
xy
+
Î
2tan
–1
 =  tan
–1
2
2
1
x
−x
Î
tan
–1
x –  tan
–1
y = tan
–1
1
x y
xy
+
Î
2tan
–1
x = sin
–1
2
2
1
x
+x
= cos
–1
2
2
1
1
x
x
+
Historical Note
The study  of trigonometry  was first  started  in  India. The  ancient  Indian
Mathematicians, Aryabhatta (476A.D.), Brahmagupta  (598 A.D.), Bhaskara I
(600 A.D.) and Bhaskara II (1114 A.D.) got important results of trigonometry. All
this knowledge went from India to Arabia and then from there to Europe. The
Greeks had  also started the  study of  trigonometry  but  their approach was so
clumsy that when the Indian approach became known, it was immediately adopted
throughout the world.
In India, the predecessor of the modern trigonometric functions, known as
the sine of an angle, and the introduction of the sine function represents one of
the  main contribution  of the  siddhantas  (Sanskrit  astronomical works)  to
mathematics.
Bhaskara I (about 600 A.D.) gave formulae to find the values of sine functions
for angles more  than  90°. A  sixteenth  century Malayalam work Yuktibhasa
contains a proof for the expansion of sin (A + B). Exact expression for sines or
cosines of 18°, 36°, 54°, 72°, etc., were given by Bhaskara II.
The symbols sin
–1
x, cos
–1
x, etc., for arc sin x, arc cos x, etc., were suggested
by  the  astronomer  Sir  John  F.W.  Hersehel  (1813) The  name  of  Thales
(about 600 B.C.) is invariably associated with height and distance problems. He
is credited with the determination of the height of a great pyramid in Egypt by
measuring shadows of the pyramid and an auxiliary staff (or gnomon) of known
INVERSE TRIGONOMETRIC FUNCTIONS     55
height, and comparing the ratios:
H
S
h
s
=
= tan (sun’s altitude)
Thales is also said to have calculated the distance of a ship at sea through
the proportionality of sides of similar triangles. Problems on height and distance
using the similarity property are also found in ancient Indian works.


56
MATHEMATICS
ʍ
The essence of Mathematics lies in its freedom. — CANTOR 
ʍ
3.1  Introduction
The knowledge of matrices is necessary in various branches of mathematics. Matrices
are one of the most powerful tools in mathematics. This mathematical tool simplifies
our work to a great extent when compared with other straight forward methods. The
evolution  of concept  of matrices is the result of an attempt to obtain compact and
simple methods of solving system of linear equations. Matrices are not only used as a
representation of the coefficients in system of linear equations, but utility of matrices
far exceeds that use. Matrix notation and operations are used in electronic spreadsheet
programs for personal computer, which in turn is used in different areas of business
and science like budgeting, sales projection, cost estimation, analysing the results of an
experiment etc. Also, many physical operations such as magnification, rotation and
reflection through a plane can be represented mathematically by matrices. Matrices
are also used in cryptography. This mathematical tool is not only used in certain branches
of sciences, but also in genetics, economics, sociology, modern psychology and industrial
management.
In  this  chapter, we  shall  find  it interesting  to become  acquainted  with the
fundamentals of matrix and matrix algebra.
3.2  Matrix
Suppose we wish to express the information that Radha has 15 notebooks. We may
express it as [15] with the understanding that the number inside [ ] is the number of
notebooks that Radha has. Now, if we have to express that Radha has 15 notebooks
and 6 pens. We may express it as [15  6] with the understanding that first number
inside [ ] is the number of notebooks while the other one is the number of pens possessed
by Radha. Let us now suppose that we wish to express the information of possession
Chapter
3
MATRICES
© NCERT
not to be republished
Documents you may be interested
Documents you may be interested