view pdf winform c# : Add hyperlink to pdf in Library control class asp.net web page windows ajax wom0-part1325

Theeffectsofconsumerknowledgeonmessageprocessing
ofelectronicword-of-mouthviaonlineconsumerreviews
Do-HyungPark
a,
*,SaraKim
b
a
KAIST(KoreaAdvancedInstituteofScienceandTechnology)BusinessSchool,207-43Cheongrangri-Dong,Dongdaemun-Gu,
Seoul130-722,SouthKorea
b
UniversityofChicago,Chicago,IL,UnitedStates
Received30November2006;receivedinrevisedform24December2007;accepted24December2007
Availableonline8January2008
Abstract
This paper investigates one type of electronic word-of-mouth (eWOM), the online consumer review. The study considers two com-
ponents of review structure: the type andthe number of reviews. Using the cognitive fit theory, we show that the type of reviewscanbe a
key moderating variable to explain the inconsistent relationship between consumer expertise and WOM in previous research. This study
examines which type of reviews cognitively fits consumers with a high (low) level of expertise. Using the elaboration likelihood model
(ELM), we also investigate that the effects of the type of reviews andthe number of reviews. The hypotheses were tested using a 2 (levels
of expertise)  2 (types of reviews)  2 (number of reviews) mixed design including two control conditions. The results show that the
effect of cognitive fit (the type of reviews) on purchase intention is stronger for experts than for novices while the effect of the number
of reviews on purchase intention is stronger for novices than experts. This paper delivers managerial implications for online sellers pro-
viding consumer created reviews along with advertisements.
2008 Elsevier B.V. All rights reserved.
Keywords: Electronic word-of-mouth; Online consumer reviews; Expertise; Cognitive fit theory; Elaboration likelihood model
1. Introduction
Aproduct progresses through a sequence of stages from
introduction to growth, maturity, and decline [1]. This
sequence is known as the product life cycle. However,
not all products go through each stage. In fact, many prod-
ucts fail even in the introduction phase, and the failure rate
is as high as 50%[2,3]. To avert failure at various stages of
the life cycle, marketers’ marketing mix strategies should
change as their products go through each stage because
consumers at various stages desire different types of infor-
mation. Consumers in the early stage want to be provided
with information on attributes because they are innovators
who are seeking technical information. Meanwhile, con-
sumers in the mainstream are relatively less knowledgeable,
so they want to get information on benefits to evaluate a
product. However, it is not easy for managers to recognize
when and how they should change their method of provid-
ing product information because the stages are not defi-
nitely discrete. Then, do marketers have to provide
information on both attributes and benefits in their adver-
tisements? First, providing both attributes and benefits
information in the same advertisement can be costly.
Moreover, previous research shows that presenting both
attributes and benefits messages may not be as effective
as providing messages focused on either attributes or ben-
efits information[4].
Word-of-mouth (WOM) is an effective way to help mar-
keters overcome these limitations [5] because WOM pro-
vides product information from the user perspective in
each stage. Since review posters are usually former users
at any given stage, they can write about a product in a
way that potential consumers in a particular stage can
1567-4223/$ - see front matter  2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.elerap.2007.12.001
*
Corresponding author. Tel.: +82 17 362 2251; fax: +82 2 958 3685.
E-mail address:prehero@business.kaist.ac.kr(D.-H. Park).
www.elsevier.com/locate/ecra
Available online at www.sciencedirect.com
Electronic Commerce Research and Applications 7 (2008) 399–410
Add hyperlink to pdf in - insert, remove PDF links in C#.net, ASP.NET, MVC, Ajax, WinForms, WPF
Free C# example code is offered for users to edit PDF document hyperlink (url), like inserting and deleting
add hyperlink pdf; add links to pdf acrobat
Add hyperlink to pdf in - VB.NET PDF url edit library: insert, remove PDF links in vb.net, ASP.NET, MVC, Ajax, WinForms, WPF
Help to Insert a Hyperlink to Specified PDF Document Page
add links to pdf in acrobat; adding hyperlinks to pdf documents
effectively process. Therefore, WOM communication is
effective in providing the right type of information to each
customer segment. However, traditionally marketers can-
not effectively set strategic plans centered on WOM
because the effects of WOM are very difficult to trace.
Recently, the Internet has emerged as a new channel of
WOM [6]. Different from traditional WOM, WOM on
the Internet, called electronic word-of-mouth (eWOM), is
measurable since comments on a product are written and
available in the websites[7]. Also, some types of eWOM
messages such as online consumer reviews in Amazon.com
are also controllable because marketers can decide whether
to allow consumer reviews to be shown or not, and if they
are shown marketers can offer a specific review format in
order to guide consumers to post their opinions in the
way they want. Thus, marketers can apply marketing strat-
egies for eWOM more strategically than traditional WOM.
The eWOM information providing both product infor-
mation and recommendations can satisfy various consumer
segments. Consumers in the early market called early
adopters want product attribute information to figure out
the importance of a product with their own criteria. On
the other hand, consumers in the mainstream market are
relatively less knowledgeable so they prefer product benefit
information[8]. They also consider peripheral cues, such as
product popularity or trends, as being important. Through
eWOM activity, consumers in the early market can obtain
supplement product information, while consumers in the
mainstream market can get user-oriented information or
asignal of product popularity. Therefore, eWOM has great
potential for helping a product transition from the early
market to the mainstream market if it can be managed well.
Because of such importance and popularity of eWOM
communication, studies in the last few years are actively
examining the effect of eWOM on consumer behavior.
Previous research on WOM communication shows an
inconsistent relationship between expertise and WOM
behavior. Some studies show a positive relationship
between the level of expertise and WOM[9,10], while other
studies suggest that there is a negative relationship[11,12].
Our study attempts to explain these contradictory results
by considering the specific type of eWOM message as a
moderator. Consumers use different message-processing
strategies depending on their level of expertise. According
to the cognitive fit theory[13], when the information type
matches the consumer information-processing strategy,
cognitive fit occurs. Thus, the type of message is an impor-
tant factor for analyzing the relationship between con-
sumer expertise and eWOM. The study investigates which
type of consumer review cognitively fits the processing
strategies depending on the level of consumer expertise.
In addition, with the elaboration likelihood model
(ELM), the study examines for which consumers the cogni-
tive fit is more important for decision making.
The number of reviews is another important factor of
review structure. The number of reviews representing the
number of previous consumers can be a signal of product
popularity. In addition, an increase in the number of
reviews relates to an increase in the amount of information.
Thus, the number of reviews also influences review message
processing. ELM can also explain the effect of the number
of reviews depending on the level of expertise. According to
ELM, consumers with low expertise are more likely to
focus on a peripheral cue such as the number of arguments,
while consumers with high expertise are more likely to
engage in effortful cognitive activity through the central
route, and they focus on the argument quality[14].
This study proposes several hypotheses and conducts an
experiment to explore how consumers process online con-
sumer reviews depending on the level of expertise. Specifi-
cally,focusing on the positive online consumer reviews, this
study examines the effect of review structure – the type and
the number of reviews – on consumer decision making. The
key research questions are as follows:
(1) What is the relationship between the level of expertise
and the impact of eWOM? That is, for which con-
sumer (experts vs. novices) is the effect of online con-
sumer reviews stronger?
(2) Which type of online consumer reviews (attribute-
centric vs. benefit-centric reviews) fit consumers with
alow (high) level of expertise?
(3) Which consumer is the effect of the review fit on the
purchase intention stronger for?
(4) Which consumer is the effect of the number of reviews
on the purchase intention stronger for?
The above questions will be highly covered throughout
the paper. With the analysis of previous research, the pre-
dicted answers of the questions will be hypothesized in the
experiment. The contributions of this research are twofold.
From the theoretical perspective, the study integrates prin-
ciples from different domains, which help us broaden the
understanding of the effects of online consumer reviews.
From the managerial perspective, our findings have impli-
cations for both marketers and designers of e-commerce
web sites in terms of how to manage online consumer
reviews.
2. Theoretical background and hypotheses
2.1. The relationship between eWOM and consumer
expertise
Prior to the Internet era, consumers shared each others’
product-related experiences through traditional WOM (e.g.
discussions with friends and family)[15]. Today, the Inter-
net makes it possible for consumers to share experiences
and opinions about a product via eWOM activity. Godes
and Mayzlin [7] show that eWOM can overcome the
limitation of traditional WOM. In traditional WOM
communication, the information is exchanged in private
conversations, so direct observation has been difficult.
However, online conversations may offer an easy and
400
D.-H. Park, S. Kim/Electronic Commerce Research and Applications 7 (2008) 399–410
VB.NET Create PDF from Word Library to convert docx, doc to PDF in
Change Word hyperlink to PDF hyperlink and bookmark. VB.NET Demo Code for Converting Word to PDF. Add necessary references: RasterEdge.Imaging.Basic.dll.
adding a link to a pdf in preview; add links to pdf document
VB.NET Create PDF from Excel Library to convert xlsx, xls to PDF
Change Excel hyperlink to PDF hyperlink and bookmark. VB.NET Demo Code for Converting Excel to PDF. Add necessary references: RasterEdge.Imaging.Basic.dll.
c# read pdf from url; active links in pdf
cost-effective opportunity to measure WOM. In addition to
overcome the limitations of traditional WOM communica-
tion, eWOM activity has allowed consumers to overcome
most information asymmetries that characterize traditional
consumer markets [16]. Thus, throughout the eWOM
activity, consumers can obtain high levels of market trans-
parency. In addition, they can take on a more active role in
the value chain and influence products and prices accord-
ing to individual preferences. Because of such importance
and popularity of eWOM communication, studies in the
last few years are actively examining factors which influ-
ence the effect of eWOM on consumer behavior.
The recent studies on eWOM focus on the motives for
posting and reading reviews and the consumers’ responses
to the eWOM messages. Hennig-Thurau et al.[17] have
developed a typology for motives of consumer online artic-
ulation based on findings from research on virtual commu-
nities and traditional WOM literature. Using an online
sample of some 2000 consumers, information on the struc-
ture and relevance of the motives of consumers’ online
articulations is generated. The resulting analysis suggests
that consumers’ desire for social interaction and economic
incentives, their concern for other consumers, and the
potential to enhance their own self-worth are the primary
factors leading to eWOM behavior. Hennig-Thurau and
Walsh[18] derive several motives that explain why custom-
ers retrieve other customers’ on-line articulations from
Web-based consumer opinion platforms. The relevance of
these motives and their impact on consumer buying and
communication behavior are tested in a large-scale empiri-
cal study. These studies, however, did not examine how the
characteristics of eWOM messages affect consumer pur-
chasing behavior. This study extends prior research on
eWOM by examining the characteristics of reviews, in par-
ticular the types of reviews (Table1).
This study focuses on the online consumer review as one
type of eWOM communication. The online consumer
review is defined as any positive or negative statement
about a product made by potential, actual, or former cus-
tomers, which is available to a multitude of people and
institutions via the Internet [19]. Chevalier and Mayzlin
[20]examinetheeffectofconsumerreviewsonrelativesales
of books at Amazon.com and Barnesandnoble.com. The
authors find that an improvement in a book’s reviews leads
to an increase in relative sales at that site. In addition, evi-
dence from review-length data suggests that customers read
review text rather than relying only on summary statistics.
Clemons et al.[21] analyze how online reviews are used to
evaluate the effectiveness of product differentiation. When
consumers become more informed, firms that provide
highly differentiated products should experience higher
growth rates than firms with less differentiated offerings.
In particular, the study finds that the variance of ratings
and the strength of the most positive quartile of reviews
play a significant role in determining which new products
grow faster in the marketplace. Huang and Chen [22]
discuss how sales volume and customer reviews influence
consumer on-line product choices, and examine the relative
effectiveness of two recommendation sources (expert
reviews vs. consumer reviews). The results reveal that sub-
jects use the choices and evaluations of others as cues for
making their own choices. Additionally, the recommenda-
tions of other consumers influence the choices of subjects
more effectivelythan recommendations from experts. How-
ever, these current studies on the online consumer review
have not considered the characteristics of review readers
such as their experience or knowledge. This study investi-
gates the level of expertise moderating the effect of eWOM
messages on consumer buying behavior (Table2).
Wangenheim and Bayo´n[23] pointed out that the inter-
action of consumer expertise and WOM remains widely
under-researched. In addition, we found that the study of
Bansal and Voyer[24] discussed this inconsistent relation-
ship between the level of expertise and WOM. Also, Gilly
et al.[12] mentioned that some empirical evidence supports
either a positive or curvilinear relationship between prod-
uct knowledge and WOM. These previous studies were
based on the study of Brucks[25]. Brucks reported that a
number of studies suggested that there is a negative rela-
tionship between the amount of experience (used as a proxy
for expertise) of an information seeker and the degree to
which he or she conducts an external search for informa-
tion. This is because consumers with high expertise think
they already have enough information to make an accurate
Table 1
Previous studies on eWOM
Authors (year)
Theory and findings
Additional comments
Hennig-Thurau
et al. (2004)
The motives for posting reviews are investigated
These studies do not investigate the effect of characteristics of eWOM
messages
Hennig-Thurau
and Walsh
(2004)
The motives for reading reviews are investigated
Chevalier and
Mayzlin (2006)
Both the number of reviews and averagestar-rating
scores are positively related to the product sales
These studies focus onreviewstatistics noton review contents.They analyze
the effects of reviews from aggregate-level approaches not from individual-
level approaches
Clemons et al.
(2006)
Both mean and variance of review ratings are
positively related to the product sales
Huang and Chen
(2006)
The effect of review sources is examined
This study does not consider consumer characteristics. Also, this study
focuses on credibility of review messages not on review contents
D.-H. Park, S. Kim/Electronic Commerce Research and Applications 7 (2008) 399–410
401
How to C#: Basic SDK Concept of XDoc.PDF for .NET
You may add PDF document protection functionality into your C# program. Hyperlink Edit. XDoc.PDF for .NET allows C# developers to edit hyperlink of PDF document
add hyperlink to pdf acrobat; add hyperlink in pdf
VB.NET PDF: Basic SDK Concept of XDoc.PDF
You may add PDF document protection functionality into your VB.NET program. Hyperlink Edit. XDoc.PDF for .NET allows VB.NET developers to edit hyperlink of PDF
adding a link to a pdf; accessible links in pdf
purchase decision so they devote little effort to obtaining
additional product information or evaluations about a
product from others[11,12]. Also, Brucks discussed other
studies [9,10,26] that postulate that prior knowledge
encourages an information search by enabling the receiver
to process information in a faster and easier way than if he
or she possesses little expertise. In sum, traditional WOM
studies have shown contradictory results about the effects
of prior knowledge on WOM behavior.
This study suggests that the type of WOM message is a
key to resolving this inconsistent relationship. The studies
on traditional WOM have not considered the message type
because it was neither measurable nor traceable. However,
the type of WOM messages on the Internet is both measur-
able and traceable because the comments about a product
are posted on the website and they accumulate as time goes
by. With cognitive fit theory, this paper integrates prior
contradictory results by considering the type of review mes-
sage as a moderator.
Cognitive fit theory indicates that individuals’ informa-
tion processing would be more efficient and effective when
they are able to use appropriate cognitive processes from
given information[13]. Performance of a decision-making
task will be enhanced when the information is given in a
form that an individual is likely to process because the
match between the information-processing strategy and
the information type minimizes cognitive effort[27]. The
cognitive fit theory has been empirically validated by other
studies in several industries[28–30].
Individuals with different levels of expertise seek differ-
ent types of information. Experts prefer specific attribute
data, while novices seek data that are interpreted and
reproduced to be easily understandable. Previous research
in accounting shows that experts want attributes to be
shown in tables with specific numbers when evaluating
alternatives, while novices like the same data to be shown
in the graphs. In terms of product information, experts
are likely to infer product benefits by themselves from tech-
nical attribute information, whereas novices are likely to
process literally expressed benefit information [31]. That
is, experts consider attribute statements as being informa-
tive, while novices find benefit statements informative[4].
For example, experts make judgments about food items
on the basis of technical attributes (e.g. nutritional infor-
mation), but novices tend to use benefit information about
the items (e.g. good for you)[31].
The same review contents can be framed into two types:
the attribute-centric type and the benefit-centric type.
Reviews contain both evaluations and recommendations.
This study assumes that recommendation parts of the
reviews are the same in both types of reviews. More specif-
ically, this study focuses on positive recommendations that
are based on favorable evaluations of a product. In addi-
tion, review positiveness is also controlled as the same
strength in both types of reviews. The difference between
the two types of reviews is the way of evaluating a product
to support recommendations. In attribute-centric reviews,
arguments supporting reviewer’s evaluations are based on
technical attributes such as numbers representing attribute
levels. Thus, their subjective evaluations are supported by
objective data and descriptions. By contrast, in benefit-cen-
tric reviews, supporting arguments convey subjective inter-
pretations about such technical attributes. Reviewers
subjectively interpreted benefits of each attribute in their
own way to evaluate a product. One example of an attri-
bute-centric review is, ‘‘I want to recommend this product.
It has 10 GB memory capacity, so I can store seven AVI
files, which are 1.4 GB video contents compressed with a
wide variety of codecs.” Meanwhile, an example of a ben-
efit-centric review is, ‘‘I want to recommend this product.
One of the most attractive aspects of this PMP is that it
has a large memory capacity so I can store seven movies
with good video quality.”
Therefore, holding that a review delivers information
about the same aspect of a product, the information-pro-
cessing strategy of experts fits reviews framed as attri-
bute-centric, while the information-processing strategy of
novices fits reviews framed as benefit-centric. When
Table 2
The relationship between WOM and expertise
Authors
(year)
Theory and findings
Additional comments
Johnson and
Russco
(1984)
The effects of WOM are stronger when consumers have high
expertise than low expertise (positive relationship between
WOMand expertise)
These studies do not consider message characteristics such as
message type. Also, they focus on consumers’ ability to process
WOM messages rather than consumers’ motivation to process
WOM messages
Punj and
Staelin
(1983)
Johnson and
Sathi
(1984)
Bloch et al.
(1986)
The effects of WOM are stronger when consumers have low
expertise than high expertise (negative relationship between
WOMand expertise)
These studies do not consider message characteristics such as
message type. These studies focus on consumers’ motivation to
process WOM messages rather than consumers’ ability to process
WOM messages
Gilly et al.
(1998)
402
D.-H. Park, S. Kim/Electronic Commerce Research and Applications 7 (2008) 399–410
C# Create PDF from Word Library to convert docx, doc to PDF in C#.
Change Word hyperlink to PDF hyperlink and bookmark. C#.NET Sample Code: Convert Word to PDF in C#.NET Project. Add necessary references:
add hyperlink pdf; adding hyperlinks to a pdf
.NET PDF Document Viewing, Annotation, Conversion & Processing
Extract hyperlink inside PDF. PDF Write. Insert text, text box into PDF. Edit, delete text from PDF. Insert images into PDF. Edit, remove images from PDF. Add,
add hyperlink to pdf in; add url pdf
individuals are able to process online consumer reviews
represented in a way that is cognitively fit, they can effi-
ciently process given reviews, thereby those reviews posi-
tively affect purchase intention.
Hypothesis 1 (Cognitive review fit hypothesis on
experts): For consumers with high expertise, reviews
framed as attribute-centric have a better fit than reviews
framed as benefit-centric.
Hypothesis 2 (Cognitive review fit hypothesis on nov-
ices): For consumers with low expertise, reviews framed
as benefit-centric have a better fit than reviews framed as
attribute-centric.
Hypothesis 3 (Review fit hypothesis on experts’ pur-
chase intention): For consumers with high expertise,
reviews framed as attribute-centric have a stronger effect
on the purchase intention than reviews framed as bene-
fit-centric.
Hypothesis 4 (Review fit hypothesis on novices’ pur-
chase intention): For consumers with low expertise,
reviews framed as benefit-centric have a stronger effect
on the purchase intention than reviews framed as attri-
bute-centric.
2.2. The effect of cognitive fit (review type) and the number
of reviews
The cognitive fit theory explains which type of reviews is
effective for consumers depending on the level of expertise.
Then, for which consumers is the cognitive fit more impor-
tant? This question can be answered from ELM. ELM, a
dual route theory, explains that attitude changes are based
on different degrees of effortfulinformation processing[32].
Amessage is transmitted and received through one of two
routes of persuasion depending on the elaboration contin-
uum: the central route and the peripheral route. In this
model, the elaboration continuum refers to how motivated
and able people are to assess the central merits of a stimu-
lus. If a person has high motivation and the ability to pro-
cess a message, individuals can engage in effortful cognitive
activity through the central route. However, when individ-
uals lack either the motivation or ability to process detailed
information, persuasion comes from the peripheral route
so they tend to rely on peripheral cues or mental heuristics
rather than focal messages. Therefore, a message with
many arguments can be accepted if a person thinks that
‘‘more is better,” without the need to carefully evaluate
those arguments[33].
In ELM, expertise is associated with the ability to pro-
cess information. Consumers with high expertise can draw
upon prior experience and knowledge to scrutinize and
evaluate carefully all of the information. It is clear that
such message processing demands a considerable amount
of cognitive resources, but consumers with high expertise
have enough cognitive resources to perform this kind of
information processing. Reviews framed as attribute-cen-
tric meet their information-processing strategy. On the
other hand, reviews framed as benefit-centric do not meet
their information processing needs because benefit-centric
reviews have already been processed and interpreted by
previous unknown consumers. On the other hand, consum-
ers with low expertise lack the ability to understand and
assess a product from attribute-centric product informa-
tion, so they prefer the reviews framed as benefit-centric.
Even though they do not understand the reviews framed
as attribute-centric well, they will try to get a signal imply-
ing whether the reviews are positive or negative. According
to ELM, novices form purchase intention through periph-
eral cues when they cannot process information through
the central route, so the signal of review positiveness itself
(positive nuance of consumer reviews) can provide useful
information for novices even when they cannot fully under-
stand the reviews. Therefore, the impact of cognitive fit
(review type) on purchase intention is stronger for consum-
ers with high expertise than for consumers with low
expertise.
The number of reviews is another important factor of
review structure. The role of the number of reviews is to
provide a signal of product popularity and to increase
the total amount of review information. Both roles are cru-
cial for consumers with low expertise because they tend to
rely on a peripheral cue such as the signal of product pop-
ularity, and because they are persuaded by a simple deci-
sion rule, ‘‘lots of messages are good.” Consumers with
high expertise, however, are not likely to be persuaded
via heuristic processing. Since the information strategy of
experts focuses on acquiring informative and useful infor-
mation for them, an increase in information quantity is
welcomed only when the information fits their needs. Thus,
the effect of the number of reviews on purchase intention is
stronger for consumers with low expertise than consumers
with high expertise (Table3).
Hypothesis 5 (ELM hypothesis on review type): The
type of online consumer review has a stronger effect
on the purchase intention of consumers with high exper-
tise than on consumers with low expertise.
Hypothesis 6 (ELM hypothesis on review number): The
number of online consumer reviews has a stronger effect
on the purchase intention of consumers with low exper-
tise than on consumers with high expertise.
3. Research method and design
3.1. Subjects and experimental design
Two hundred and twenty two undergraduate and grad-
uate students participated in the experiment. All of the sub-
jects received a gift worth $5 for their participation. The
hypotheses were tested using a mixed design of 2 (levels
of expertise)  2 (types of reviews)  2 (number of reviews)
including two control conditions. The experimental
D.-H. Park, S. Kim/Electronic Commerce Research and Applications 7 (2008) 399–410
403
VB.NET Create PDF from PowerPoint Library to convert pptx, ppt to
Export PowerPoint hyperlink to PDF. VB.NET Demo Code for Converting PowerPoint to PDF. Add necessary references: RasterEdge.Imaging.Basic.dll.
chrome pdf from link; add hyperlink pdf document
C# Create PDF from PowerPoint Library to convert pptx, ppt to PDF
Export PowerPoint hyperlink to PDF in .NET console application. C#.NET Demo Code: Convert PowerPoint to PDF in C#.NET Application. Add necessary references:
pdf hyperlinks; pdf email link
procedure was the same for each group, and participants
within each of the 10 cells were randomly assigned.
3.2. Experimental product
We chose a relatively new product, the portable multi-
media player (PMP). The new product ensures that con-
sumers process the suggested information with no
stereotypes about the brand and its category. In addition,
consumers tend to rely on the opinions from previous users
due to the fact that electronic products are generally com-
plicated. The brand name of the product was not presented
in order to prevent any brand effects.
3.3. Experimental procedure
Subjects read the first page of the booklet, which was a
statement about the study’s purpose. The statement was
same for all groups. Then, respondents read the product
information page consisting of a product advertisement
and online consumer reviews. The advertisement provided
apicture of the product and a brief description of the fea-
tures. Online consumer reviews were located under the
advertisement. Five different sets of online consumer
reviews were developed for each condition. Each partici-
pant was exposed to one of the five review sets. First in
the attribute-centric condition, attribute-centric reviews
were presented with two overall evaluation reviews. More
specifically, in the condition involving the small number
of reviews, two overall evaluation reviews and two attri-
bute-centric reviews were presented. In the condition
involving the large number of reviews, two overall evalua-
tion reviews and six attribute-centric reviews were pre-
sented. On the other hand, in the benefit-centric
condition, two overall evaluation reviews and two (or six)
benefit-centric reviews were given depending on the num-
ber of reviews. Finally, in the control condition reviews,
only two overall evaluation reviews were presented without
the addition of either type of review. An example of review
sets – 4 attribute-centric vs. 4 benefit-centric conditions – is
shown in Appendix A. The number of reviews for each
condition was determined after we interviewed 22 under-
graduate students in order to find out how many reviews
were evaluated as being a small or large number. The
four-review condition was chosen as the small number
and the eight-review condition was chosen as the large
number of reviews. Each review had three lines.
After reading the product advertisement and reviews,
subjects indicated their purchase intentions using two
items: willing to buy/not willing to buy, willing to recom-
mend/not willing to recommend[34,35]. On the following
page, three measurement items were administered to check
the treatment effects of the review type. Subjects responded
to three 7-point items: the reviews were informative/not
informative, useful/not useful, and helpful/not helpful[4].
For the manipulation of the number of reviews, two items
were measured to check if subjects perceived the number of
reviews as we intended. Then, product knowledge about
PMPs was assessed using 12 multiple-choice questions.
These questions were about the video data format, the
speed of data transport, and so on. Subjective knowledge
about PMPs was also measured to classify subjects as
experts and novices.
Finally, subjects completed measures used to control the
effects of possible confounding variables in order to
improve the internal validity of this study. If there is a sta-
tistically significant difference among treatment groups,
these variables should be used as the covariate variables.
First, the perception of review positiveness was measured.
This control was measured using two items (‘‘Reviews were
positive,” ‘‘Most of the reviews recommended buying the
product”). The final variable was measured to control each
subject’s general attitude toward reviews through four 7-
point items (‘‘When I buy a product online, I always read
Table 3
Summarized hypotheses
No.
Name
Statement of hypothesis
Predicted effect
1.
Cognitive review fit
hypothesis on experts
For consumers with high expertise, reviews framed as attribute-centric
have a better fit than reviews framed as benefit-centric
(cognitive fit of experts) Attribute-
centric reviews > benefit-centric
reviews
2.
Cognitive review fit
hypothesis on novices
For consumers with low expertise, reviews framed as benefit-centric
have a better fit than reviews framed as attribute-centric
(cognitive fit ofnovices) Benefit-centric
reviews > attribute-centric reviews
3.
Review fit hypothesis on
experts’ purchase
intention
For consumers with high expertise, reviews framed as attribute-centric
have a stronger effecton the purchase intention than reviews framed as
benefit-centric
(experts’purchaseintention)Attribute-
centric reviews > benefit-centric
reviews
4.
Review fit hypothesis on
novices’ purchase
intention
For consumers with low expertise, reviews framed as benefit-centric
have a stronger effecton the purchase intention than reviews framed as
attribute-centric
(novices’ purchase intention) Benefit-
centric reviews > attribute-centric
reviews
5.
ELMhypothesis onreview
type
Thetypeofonlineconsumer reviewhasa strongereffectonthepurchase
intention of consumers with high expertisethan on consumers with low
expertise
(purchase intention) Experts >novices
6.
ELMhypothesis onreview
number
The number of online consumer reviews has a stronger effect on the
purchase intention of consumers with low expertise than on consumers
with high expertise
(purchase intention) Novices> experts
404
D.-H. Park, S. Kim/Electronic Commerce Research and Applications 7 (2008) 399–410
reviews that are presented on the website,” ‘‘When I buy a
product online, the reviews presented on the website are
helpful for my decision making,” ‘‘When I buy a product
online, the reviews presented on the website make me con-
fident in purchasing the product,” and ‘‘If I don’t read the
reviews presented on the website when I buy a product
online, I worry about my decision”).
4. Research results
Two hundred and fifty undergraduate and graduate stu-
dents participated voluntarily. Their average age was 26.58
years, and 51.2% were male. The average frequency of
online purchases per month was 0.89 times. There are no
significant differences in gender (F(9,240) = 0.766,
p< 0.648), age (F(9,240) = 0.862, p < 0.560), and frequen-
cies of online purchase (F(9,240) = 0.896, p < 0.530), indi-
cating that the random assignment was successful.
Subjects were classified as either experts or novices
according to their prior knowledge dichotomized into high
and low levels. We sorted the participants based on the
number of correct responses to the 12 questions. For the
participants with the same score, we sorted them again
ordered by the subjective knowledge score. Afterwards,
we performed the median-split to divide the participants
into two groups – expert and novice. For each group, there
are significant differences for both the objective knowledge
score (M
expert
=8.68 vs. M
novice
=3.77, F(1,248) =
257.656, p < 0.001) and the subjective knowledge score
(M
expert
=5.69 vs. M
novice
=2.32, F(1,248) = 720.492,
p< 0.001). Our focus is to classify the participants as either
being the group with a relatively higher level of expertise or
the group with a relatively lower level of expertise. The
method used in this experiment is common for manipulat-
ing consumer knowledge in marketing literature[4,36]. In
this experiment, 125 subjects were experts and 125 were
novices.
Since two items to measure the perceived number of
reviews were loaded on a single factor (Cronbach’s
a= 0.952), the average of the items was used to check
whether the number of reviews was manipulated as we
intended. An ANOVA analysis indicated the presence of
the main effect of the number of reviews (M
2-review(control)
=
2.85,M
4-review
=3.89, vs. M
8-review
=4.89, F(2,247) = 198.334,
p< 0.001), indicating that the number of reviews was
manipulated as we intended.
Control variables including the perception of review
positiveness, and the general attitude toward reviews were
analyzed to see if there were significant differences among
groups. No significant difference was shown in the percep-
tion of review positiveness (F(9,240) = 0.205, p < 0.993)
and
the
general
attitude
toward
reviews
(F(9,240) = 0.036, p < 0.999). Thus, these control variables
were excluded in the following analysis.
To test hypotheses 1 (Cognitive review fit hypothesis on
experts) and 2 (Cognitive review fit hypothesis on novices),
subjects’ responses relevant to the type of review informa-
tion were examined. MANOVA was performed to check
the effects of the types of review information and the levels
of expertise on the three dependent variables: informative-
ness, usefulness, and helpfulness. The results showed that
there were significant main effects of the type of review
information (Wilk’s k = 0.384, p < 0.001) and expertise
(Wilk’s k = 0.954, p< 0.001). In addition, there was a
significant interaction effect between the type of review
information and expertise (Wilk’s k = 0.527, p < 0.001).
This interaction was significant for all the dependent
variables including informativeness (F(2,244) = 57.708,
p< 0.001), usefulness (F(2,244) = 59.682, p < 0.001), and
helpfulness (F(2,244) = 63.027, p < 0.001). Planned contrasts
showed significant differences between experts and novices.
For experts, reviews framed as being attribute-centric were
viewed as being more informative (M
attribute-centric
=5.24
vs. M
benefit-centric
=3.24, F(1,244) = 179.31, p< 0.001), useful
(M
attribute-centric
=4.96 vs. M
benefit-centric
=2.94, F(1,244)
=127.23, p < 0.001), and helpful (M
attribute-centric
=5.06
vs. M
benefit-centric
=2.90, F(1,244) = 167.12, p < 0.001) than
reviews framed as being benefit-centric. By contrast, novices
stated reviews framed as being benefit-centric were more
informative (M
benefit-centric
=5.24 vs. M
attribute-centric
=3.24, F(1,244) = 44.83, p < 0.001), useful (M
benefit-centric
=4.96 vs. M
attribute-centric
=3.90, F(1,244) =
35.03,
p< 0.001), and helpful (M
benefit-centric
=5.00 vs. M
attribute-
centric
=4.02, F(1,244) = 34.40, p < 0.001) than reviews
framed as being attribute-centric. For overall evaluation
reviews, the level of expertise has no significant effect on
the perceived informativeness (F(1,244) = 0.04, p < 0.85),
usefulness (F(1,244) = 0.62, p < 0.43), and helpfulness
(F(1,244) = 0.01, p < 0.99). The results show that experts
seek attribute information because they want to use their
prior knowledge to infer product benefits from the stated
attributes. Benefit information does not permit such infer-
ence. By contrast, novices prefer the benefits only messages
because the specification of product benefits facilitates
understanding of the given reviews. Interestingly, we found
that the difference between attribute-centric and benefit-
centric messages in terms of message preference was greater
for experts than for novices. It is consistent with a previous
study saying that experts have a clear preference structure
rather than novices [36]. Hence, hypotheses 1 (Cognitive
review fit hypothesis on experts) and 2 (Cognitive review
fit hypothesis on novices) are accepted.
Since factor analysis indicated that the two items mea-
suring purchase intention were loaded on a single factor
(eigen-value = 1.936, Cronbach’s a= 0.966), the two items
were averaged to compose a purchase intention score. The
mean and standard deviation are inTable4.
To test hypotheses 3 (Review fit hypothesis on experts’
purchase intention) and 4 (Review fit hypothesis on nov-
ices’ purchase intention), an ANOVA was performed.
The two-way interaction effect between review type and
expertise was significant as shown inTable5. The relation-
ship is shown inFig.1. For experts, purchase intention was
significantly higher in the benefit-centric condition than in
D.-H. Park, S. Kim/Electronic Commerce Research and Applications 7 (2008) 399–410
405
the overall evaluation only condition (F(1,244) = 41.70,
p< 0.001). Therefore, experts are also affected by benefit-
centric reviews. They had higher purchase intention when
there was additional benefit information in the reviews.
However, an increase in purchase intention was greater in
the attribute-centric condition than in the benefit-centric
condition (F(1,244) = 95.69, p < 0.001). Since experts have
better fit with attribute-centric reviews, they have higher
purchase intention when they process attribute-centric
reviews than when they process benefit-centric reviews.
Thus, hypotheses 3 (Review fit hypothesis on experts’ pur-
chase intention) is supported.
Novices showed higher purchase intention when they
were given additional attribute-centric reviews than
when they were given
overall evaluations only
(F(1,244) = 70.29, p < 0.001). Therefore, even though they
might not understand the benefits of a product by reading
attribute-centric reviews,a simple increase in the number of
reviews from two overall evaluation reviews to two overall
evaluation reviews and two additional attribute-centric
reviews affected their purchase intention. However, when
they were provided with benefit-centric reviews, which have
abetter fit, their purchase intention was higher than when
they were provided with attribute-centric reviews
(F(1,244) = 53.07, p < 0.001). Therefore, hypotheses 4
(Review fit hypothesis on novices’ purchase intention) is
also accepted. In sum, the results are consistent with the
expectation based on the cognitive fit theory that experts
have higher purchase intention when they read attribute-
centric reviews, while novices have higher purchase inten-
tion when they are exposed to benefit-centric reviews.
To test hypotheses 5 (ELM hypothesis on review type)
and 6 (ELM hypothesis on review number), an ANOVA
of the 2  2  2 factorial design (not included control con-
ditions) was performed. The significant interaction between
review type and expertise (F(1,192) = 201.384, p < 0.001)
revealed that the review type had a stronger impact on pur-
chasing intention under high-expertise conditions than
under low-expertise conditions (see Fig. 1). This result
was the same as the prediction from ELM. Thus, hypoth-
eses 5 (ELM hypothesis on review type) is accepted. The
two-way interaction effect between the number of reviews
and
expertise
was
significant
(F(1,192) = 3.847,
p< 0.001). The relationship is shown inFig.2.The increase
in purchase intention of novices when shifting from the
small number of reviews to the large number of reviews
is greater than the increase in purchase intention of experts.
Thus, hypothesis 6 (ELM hypothesis on review number) is
also accepted.
For further explanation of the results, we explored the
different effects of the number of reviews and review type
under low- and high-expertise conditions. It was possible
Table 4
Descriptive statistics ofpurchaseintention(mean,standard deviation,and
cell size)
Experts
Novices
Attribute-
centric
Benefit-
centric
Attribute-
centric
Benefit-
centric
Control (overall
evaluation only)
1.86 (0.69), n = 25
1.85 (0.55), n= 25
Small number of
reviews
3.90 (0.68),
n= 25
2.90 (0.58),
n=25
2.88(0.58),
n= 25
3.90
(0.71),
n= 25
Large number of
reviews
4.92 (0.61),
n= 25
3.10 (0.52),
n=25
3.80(0.60),
n= 25
4.88
(0.62),
n= 25
Table 5
ANOVA results
Purchase intention
F
p
Number of reviews
80.985
0.01
Type of reviews
4.313
0.04
Expertise
3.408
0.07
Number of reviews  type of reviews
4.805
0.03
Number of reviews  expertise
3.847
0.05
Type of reviews  expertise
201.384
0.01
Number of reviews  type of reviews expertise
6.443
0.01
1
2
3
4
5
Expert
Novice
Control
benefit-centric
attribute-centric
Fig. 1. The interaction effect of the review type the level of expertise.
1
2
3
4
5
Expert
Novice
Control
4 reviews
8 reviews
Fig. 2. The interaction effect of the number of reviews the level of
expertise.
406
D.-H. Park, S. Kim/Electronic Commerce Research and Applications 7 (2008) 399–410
to perform these analyses because the three-way interaction
effect of the number of reviews  review type  expertise
was significant (F(1,192) = 6.443, p < 0.05). Experts did
not have significantly higher purchase intention when they
read a large number of benefit-centric reviews than when
they read a small number of benefit-centric reviews
(F(1,192) = 1.33, p < 0.25). That is,the effect of an increase
in the number of reviews on purchase intention was higher
for the attribute-centric condition than for the benefit-cen-
tric condition (F(1,192) = 11.19, p < 0.001). Since experts
are likely to engage in the effortful process of reviews, a
simple increase in benefit-centric reviews may not affect
their purchase intention. By contrast, for novices, a simple
increase in the number of reviews affects their purchase
intention regardless of the types of reviews (benefit-centric
reviews: F(1,192) = 31.96, p < 0.001; attribute-centric
reviews: F(1,192) = 28.17, p < 0.001). Through further
analysis on the three-way interaction, we could explain
the acceptance of hypotheses 5 (ELM hypothesis on review
type) and 6 (ELM hypothesis on review number) more
clearly (Table6,Fig.3).
5. Conclusion
This study makes several theoretical contributions.
First, this study resolves the previous inconsistent analyses
on the relationship between WOM and expertise by consid-
eringthe type of WOM message as a moderator. Studies on
traditional WOM have not investigated the moderating
role of message type because it was difficult to measure
or trace the contents of WOM messages. This study, focus-
ing on online consumer reviews as eWOM messages,
explains this contradiction using the cognitive fit theory.
The results show that cognitive fit occurs when experts
(novices) process the reviews framed as attribute-centric
(benefit-centric).
Second, this study applies ELM to investigate the effects
of cognitive fit (review type) and the number of reviews.
Previous research on ELM mainly focused on motivational
factors (e.g. involvement and relevance) and its relation-
ships with the qualitative aspect of messages. This study
examined how an ability-related factor (the level of exper-
tise) affects the processing of different types of messages. By
integrating the cognitive fit theory and ELM, this study
examines that consumers with different levels of expertise
prefer different types of review messages (based on cogni-
tive fit theory), and the effect of cognitive fit on purchase
intention is stronger for experts than for novices (based
on ELM). In addition to the effect of cognitive fit depend-
ing on consumer expertise, this study shows that the num-
ber of reviews is a more important factor for novices than
for experts. It is because the number of reviews can be a
peripheral cue to show product popularity and many
advantages of a product for novices.
The findings of this study have several managerialimpli-
cations. These findings help marketers develop strategic
plans for each stage of the product life cycle. Marketers
need to provide differently framed product information
Table 6
Hypotheses testing
No.
Name
Predicted effect
Results
1.
Cognitive review fit hypothesis on experts
(cognitive fit of experts) Attribute-centric reviews >benefit-centric reviews
Accepted
2.
Cognitive review fit hypothesis on novices
(cognitive fit of novices) Benefit-centric reviews> attribute-centric reviews
Accepted
3.
Review fit hypothesis on experts’ purchase
intention
(experts’ purchase intention) Attribute-centric reviews >benefit-centric
reviews
Accepted
4.
Review fit hypothesis on novices’ purchase
intention
(novices’ purchase intention) Benefit-centric reviews> attribute-centric
reviews
Accepted
5.
ELM hypothesis on review type
(purchase intention) Experts > novices
Accepted
6.
ELM hypothesis on review number
(purchase intention) Novices >experts
Accepted
1
2
3
4
5
6
7
Control
4 reviews
8 reviews
benefit-centric
attribute-centric
Novices
1
2
3
4
5
6
7
Control
4 reviews
8   
benefit-centric
attribute-centric
Experts
reviews
Fig. 3. The interaction effect of the review type the number of reviews  the level of expertise.
D.-H. Park, S. Kim/Electronic Commerce Research and Applications 7 (2008) 399–410
407
for potential consumers with different levels of expertise. In
the introduction stage of a product, target consumers are
likely to be early-adopters with a relatively high level of
expertise, so reviews should contain attribute information.
On the other hand, consumers in the mainstream market
(consumers in the maturity stage of the product life cycle)
have a relatively low level of product knowledge, so they
seek reviews framed as benefit-centric.
Online consumer reviews are presented on the Internet
without any standard format[37]. That is, consumers freely
write about the experience theyhad with aproduct.Accord-
ingto this study, though, online sellers need to deliver prod-
uct information framed in a cognitively fitted way for both
expertsand novices.However, it is unrealistic andunnatural
for onlinesellersto provideastandardized reviewformatfor
previous buyers because ‘‘word-of-mouth” messages are
supposed to be informal and, therefore, format-free. We
suggest adifferent strategy reflecting the results of this study
instead of a strategy providing different review formats.
Marketers can sort reviewsdepending on thetypeof reviews
(attribute-focused reviews and benefit-focused reviews) or
the level of reviewer knowledge. Then, they can first show
the reviews that match thelevelof expertiseof potentialcon-
sumers.In orderto figure out whichtypeof review should be
given to which reader, marketers need to get information
about the level of expertise of individual potential buyers
as well as reviewers (previous buyers). This information
can be acquired at the time that consumers become a mem-
ber of the online shopping mall.The strategy to sort reviews
dependingon thelevelof reviewer expertiseiseven moreeffi-
cient when there are plenty of reviews.
Using a star-rating system, we suggest another strategy
for potential consumers to obtain better reviews easily.
There can be two different types of star-rating systems.
First, sellers can provide a summary of product evaluations
with a star system. By showing the average star-rating
score and the number of reviewers, review readers, espe-
cially those with a low level of expertise, simply can infer
the value of the product. This star-system is widely used
in online shopping malls. Second, review readers can eval-
uate posted reviews using a star system. In this case, the
number of stars means the extent to which the reviews
themselves are well written. These star scores can be a
cue to provide information on the quality (usefulness or
helpfulness) of reviews, resulting in potential consumers
finding good reviews more easily. If online sellers have
already acquired enough data on the level of consumer
expertise, they can provide both ‘‘best reviews selected by
novice consumers” and ‘‘best reviews selected by expert
consumers.” This will help potential review readers focus
on reviews with a high cognitive fit.
There are some limitations to this study. First, we limit
our investigation to positive reviews. The purpose of this
study is to find that consumers with different levels of
expertise fit different types of reviews. Furthermore, this
study tries to find the differences in the effect of the number
of reviews depending on whether consumers put more
weight on the review fit or the number of reviews itself.
This research, therefore, focuses on three main factors
influencing the processing of reviews: (1) a characteristic
of consumers (expertise), (2) a quantitative characteristic
of reviews (the number of reviews), and (3) a qualitative
characteristic of reviews (the type of reviews). However,
in reality, consumers seek to read both positive and nega-
tive reviews simultaneously. In general, the number of posi-
tive reviews occupies a larger portion of total reviews.
Resnick and Zeckhauser[38] reported that 99.1% of cus-
tomer feedback on eBay in the late 1990s was positive, fol-
lowed by negative (0.6%) and neutral (0.3%). Mulpuru[39]
evaluated 4000 reviews in the Electronics and Home &
Garden categories on the Amazon.com site. She found that
more than 80% of the reviews were positive. Although the
number of positive reviews overwhelms that of negative
reviews, negative reviews are influential to consumers. Che-
valier and Mayzlin [20] concluded that negative reviews
have a greater effect than positive reviews in their study.
Other references, such as and Pavlou and Dimoka [40]
and Ba and Pavlou [41] found evidence on the stronger
effect of negative comments compared to the positive ones.
Mulpuru [39] also reported that the negative reviews
occupying a smaller portion of total reviews were generally
considered helpful to consumers.
If we consider only negative reviews, the effects of types
of reviews and the number of reviews can be expected to be
amirror image of our current results. Novices will be more
sensitive to benefit-focused negative reviews, while experts
will be more sensitive to attribute-focused negative reviews
in terms of cognitive fit with reviews. Consistent with our
hypotheses, we can expect that consumers will be able to
more effectively process reviews compatible with their pro-
cessing strategy. Thus, reviews that fit them (either experts
or novices) in terms of their type will amplify the effect of
the valence of reviews. More specifically, consumers will
have a more positive (negative) attitude toward the product
when they processed positive (negative) reviews that fit
them. However, it will still be worthwhile to see whether
this mirror image can be generated in the context of nega-
tive reviews. Moreover, studies on mixed reviews (a combi-
nation of positive and negative reviews) can be another
future research area. For example, investigating whether
novices or experts are more sensitive to negative reviews
will be an interesting future research area.
Second, this study focuses on reviews on product eval-
uations. Reviews or WOM communication can focus
either on the seller or the product (or both). The reviews
about a seller mainly mean the reviews on transactions
such as product delivery or product payment. These
reviews may be critical at the time when consumers make
a final buying decision. The previous studies in the con-
text of online auction sites like eBay mainly deal with
the effect of seller reviews [42–45]. The common finding
of these studies is that the seller’s reputation can become
an important factor in the bid, and this indicates that
there is an strong impact of the seller’s reputation on
408
D.-H. Park, S. Kim/Electronic Commerce Research and Applications 7 (2008) 399–410
Documents you may be interested
Documents you may be interested