﻿

# c# pdf free : Add email link to pdf SDK Library API .net wpf azure sharepoint TRENCH_REAL_ANALYSIS11-part228

Section2.5
Taylor’sTheorem
103
Thisand(2.5.10)implythat
f.x/f.x
0
/
.xx
0
/n
(2.5.11)
hasthesamesignasf
.n/
.x
0
/if0<jxx
0
j<ı.Ifnisoddthedenominatorof(2.5.11)
changessignineveryneighborhoodofx
0
,andthereforesomustthenumerator(sincethe
ratiohasconstantsignfor0< jxx
0
j< ı). Consequently,f.x
0
/cannotbealocal
extremevalueoff.Thisproves
(a)
.Ifniseven,thedenominatorof(2.5.11)ispositive
forx¤x
0
,sof.x/f.x
0
/musthavethesamesignasf
.n/
.x
0
/for0<jxx
0
j<ı.
Thisproves
(b)
.
FornD2,
(b)
iscalledthesecondderivativetestforlocalextremepoints.
Example2.5.4
Iff.x/Dex
3
,thenf0.x/D3x2ex
3
,and0istheonlycriticalpoint
off.Since
f
00
.x/D.6xC9x
4
/e
x
3
and
f
000
.x/D.6C54x
3
C27x
6
/e
x
3
;
f00.0/D0andf000.0/¤0.Therefore,Theorem2.5.3impliesthat0isnotalocalextreme
pointoff.Sincef isdifferentiableeverywhere,ithasnolocalmaximaorminima.
Example2.5.5
Iff.x/Dsinx
2
,thenf
0
.x/D2xcosx
2
,sothecriticalpointsoff
are0and˙
p
.kC1=2/,kD0;1;2;:::.Since
f
00
.x/D2cosx
2
4x
2
sinx
2
;
f
00
.0/D2 and f
00
˙
p
.kC1=2//
D.1/
kC1
.4kC2/:
Therefore,Theorem2.5.3impliesthatf attainslocalminimaat0and˙
p
.kC1=2/for
oddintegersk,andlocalmaximaat˙
p
.kC1=2/forevenintegersk.
Taylor’stheorem
Theorem 2.5.1impliesthattheerrorinapproximatingf.x/byT
n
.x/approacheszero
fasterthan.xx
0
/
n
asx approachesx
0
; however, , itgivesnoestimateoftheerrorin
approximatingf.x/byT
n
.x/foraﬁxedx. Forinstance,itprovidesnoestimateofthe
errorintheapproximation
e
0:1
T
2
.0:1/D1C
0:1
C
.0:1/
2
D1:105
(2.5.12)
obtainedbysettingnD2andx D0:1in(2.5.8). Thefollowingtheoremprovidesaway
.nC1/
existsina
neighborhoodofx
0
.
Add email link to pdf - insert, remove PDF links in C#.net, ASP.NET, MVC, Ajax, WinForms, WPF
Free C# example code is offered for users to edit PDF document hyperlink (url), like inserting and deleting
Add email link to pdf - VB.NET PDF url edit library: insert, remove PDF links in vb.net, ASP.NET, MVC, Ajax, WinForms, WPF
Help to Insert a Hyperlink to Specified PDF Document Page
104 Chapter2
DifferentialCalculusofFunctionsofOneVariable
Theorem2.5.4(Taylor’sTheorem)
Supposethatf
.nC1/
existsonanopenin-
0
;andletxbeinI:Thentheremainder
R
n
.x/Df.x/T
n
.x/
canbewrittenas
R
n
.x/D
f.nC1/.c/
.nC1/Š
.xx
0
/
nC1
;
wherecdependsuponxandisbetweenxandx
0
:
Thistheoremfollowsfromanextensionofthemeanvaluetheoremthatwewillprove
below.Fornow,letusassumethatTheorem2.5.4iscorrect,andapplyit.
Example2.5.6
Iff.x/D e
x
,thenf
000
.x/ D D e
x
, andTheorem2.5.4withnD 2
impliesthat
e
x
D1CxC
x
2
C
e
c
x
3
;
wherecisbetween0andx.Hence,from(2.5.12),
e
0:1
D1:105C
e
c
.0:1/
3
6
;
where0<c<0:1.Since0<e
c
<e
0:1
,weknowfromthisthat
1:105<e
0:1
<1:105C
e
0:1
.0:1/
3
6
:
Thesecondinequalityimpliesthat
e
0:1
1
.0:1/
3
6
<1:105;
so
e
0:1
<1:1052:
Therefore,
1:105<e
0:1
<1:1052;
andtheerrorin(2.5.12)islessthan0:0002.
Example2.5.7
Innumericalanalysis, forwarddifferencesare usedtoapproximate
derivatives. Ifh>0,theﬁrstandsecondforwarddifferenceswithspacingharedeﬁned
by
f.x/Df.xCh/f.x/
and
2
f.x/DŒf.x/Df.xCh/f.x/
Df.xC2h/2f.xCh/Cf.x/:
(2.5.13)
Higherforwarddifferencesaredeﬁnedinductively(Exercise2.5.18).
RasterEdge.com General FAQs for Products
VB.NET Create PDF from PowerPoint Library to convert pptx, ppt to
Link: Edit URL. Bookmark: Edit Bookmark. Metadata: Edit, Delete Metadata. Form Create PDF file from PowerPoint free online without email. Add necessary references
Section2.5
Taylor’sTheorem
105
Wewillﬁndupperboundsforthemagnitudesoftheerrorsintheapproximations
f
0
.x
0
/
f.x
0
/
h
(2.5.14)
and
f
00
.x
0
/
2
f.x
0
/
h2
:
(2.5.15)
Iff
00
existsonanopenintervalcontainingx
0
andx
0
Ch,wecanuseTheorem2.5.4to
estimatetheerrorin(2.5.14)bywriting
f.x
0
Ch/Df.x
0
/Cf
0
.x
0
/hC
f
00
.c/h
2
2
;
(2.5.16)
wherex
0
<c<x
0
Ch.Wecanrewrite(2.5.16)as
f.x
0
Ch/f.x
0
/
h
f
0
.x
0
/D
f0.c/h
2
;
whichisequivalentto
f.x
0
/
h
f
0
.x
0
/D
f
00
.c/h
2
:
Therefore,
ˇ
ˇ
ˇ
ˇ
f.x
0
/
h
f
0
.x
0
/
ˇ
ˇ
ˇ
ˇ
M
2
h
2
;
whereM
2
isanupperboundforjf
00
jon.x
0
;x
0
Ch/.
Iff000 existsonanopenintervalcontainingx
0
andx
0
C2h,wecanuseTheorem2.5.4
toestimatetheerrorin(2.5.15)bywriting
f.x
0
Ch/Df.x
0
/Chf
0
.x
0
/C
h
2
2
f
00
.x
0
/C
h
3
6
f
000
.c
0
/
and
f.x
0
C2h/Df.x
0
/C2hf
0
.x
0
/C2h
2
f
00
.x
0
/C
4h
3
3
f
000
.c
1
/;
wherex
0
<c
0
<x
0
Chandx
0
<c
1
<x
0
C2h.Thesetwoequationsimplythat
f.x
0
C2h/2f.x
0
Ch/Cf.x
0
/Dh
2
f
00
.x
0
/C
4
3
f
000
.c
1
/
1
3
f
000
.c
0
/
h
3
;
whichcanberewrittenas
2
f.x
0
/
h2
f
00
.x
0
/D
4
3
f
000
.c
1
/
1
3
f
000
.c
0
/
h;
becauseof(2.5.13).Therefore,
ˇ
ˇ
ˇ
ˇ
2
f.x
0
/
h2
f
00
.x
0
/
ˇ
ˇ
ˇ
ˇ
5M
3
h
3
;
whereM
3
isanupperboundforjf000jon.x
0
;x
0
C2h/.
VB.NET Create PDF from Word Library to convert docx, doc to PDF in
Link: Edit URL. Bookmark: Edit Bookmark. Metadata: Edit, Delete Metadata. Form Process. Free online Word to PDF converter without email. Add necessary references:
VB.NET Create PDF from Excel Library to convert xlsx, xls to PDF
Link: Edit URL. Bookmark: Edit Bookmark. Metadata: Edit, Delete Metadata. Form Convert Excel to PDF document free online without email. Add necessary references:
106 Chapter2
DifferentialCalculusofFunctionsofOneVariable
TheExtendedMeanValueTheorem
Wenowconsidertheextendedmeanvaluetheorem,whichimpliesTheorem2.5.4(Exer-
cise2.5.24).Inthefollowingtheorem,aandbaretheendpointsofaninterval,butwedo
notassumethata<b.
Theorem2.5.5(Extended MeanValueTheorem)
Supposethatfiscon-
tinuousonaﬁniteclosedintervalI withendpointsaandb.thatis,eitherI I D.a;b/or
I D.b;a//;f
.nC1/
existsontheopenintervalI
0
;and;ifn>0;thatf
0
,...,f
.n/
exist
andarecontinuousata:Then
f.b/
Xn
rD0
f
.r/
.a/
.ba/
r
D
f
.nC1/
.c/
.nC1/Š
.ba/
nC1
(2.5.17)
forsomecinI
0
:
Proof
Theproofisbyinduction. Themeanvaluetheorem(Theorem2.3.11)implies
theconclusionfornD0. Nowsupposethatn1,andassumethattheassertionofthe
theoremistruewithnreplacedbyn1.Theleftsideof(2.5.17)canbewrittenas
f.b/
Xn
rD0
f
.r/
.a/
.ba/
r
DK
.ba/
nC1
.nC1/Š
(2.5.18)
.nC1/
.c/forsomecinI
0
. Tothisend,
considertheauxiliaryfunction
h.x/Df.x/
Xn
rD0
f
.r/
.a/
.xa/
r
K
.xa/
nC1
.nC1/Š
;
whichsatisﬁes
h.a/D0; h.b/D0;
(thelatterbecauseof(2.5.18))andiscontinuousontheclosedintervalI anddifferentiable
onI
0
,with
h
0
.x/Df
0
.x/
n1
rD0
f
.rC1/
.a/
.xa/
r
K
.xa/
n
:
(2.5.19)
Therefore,Rolle’stheorem(Theorem2.3.8)impliesthath
0
.b
1
/ D 0forsomeb
1
inI
0
;
thus,from(2.5.19),
f
0
.b
1
/
n1
rD0
f
.rC1/
.a/
.b
1
a/
r
K
.b
1
a/
n
D0:
Ifwetemporarilywritef
0
Dg,thisbecomes
g.b
1
/
n1
X
rD0
g
.r/
.a/
r
.b
1
a/
r
K
.b
1
a/
n
D0:
(2.5.20)
C# PDF Convert to Word SDK: Convert PDF to Word library in C#.net
Create editable Word file online without email. C#.NET DLLs and Demo Code: Convert PDF to Word Document in C#.NET Project. Add necessary references:
VB.NET PDF Convert to Word SDK: Convert PDF to Word library in vb.
Create editable Word file online without email. In order to convert PDF document to Word file using VB.NET programming code, you have to Add necessary references
Section2.5
Taylor’sTheorem
107
Sinceb
1
2 I
0
,thehypothesesonf implythatgiscontinuousontheclosedintervalJ
withendpointsaandb
1
,g
.n/
existsonJ
0
,and,ifn 1,g
0
,...,g
.n1/
existandare
continuousata(alsoatb
1
,butthisisnotimportant).Theinductionhypothesis,appliedto
gontheintervalJ,impliesthat
g.b
1
/
n1
rD0
g
.r/
.a/
.b
1
a/
r
D
g
.n/
.c/
.b
1
a/
n
forsomecinJ
0
.Comparingthiswith(2.5.20)andrecallingthatgDf
0
yields
KDg
.n/
.c/Df
.nC1/
.c/:
SincecisinI0,thiscompletestheinduction.
2.5Exercises
1.
Let
f.x/D
e
1=x
2
; x¤0;
0;
xD0:
Showthatf hasderivativesofallorderson.1;1/andeveryTaylorpolynomial
INT
: SeeExercise2.4.40:
2.
Supposethatf
.nC1/
.x
0
/exists,andletT
n
x
0
.Showthatthefunction
E
n
.x/D
8
<
:
f.x/T
n
.x/
.xx
0
/n
; x2D
f
fx
0
g;
0;
xDx
0
;
isdifferentiableatx
0
,andﬁndE
0
n
.x
0
/.
3. (a)
Prove:Iffiscontinuousatx
0
andthereareconstantsa
0
anda
1
suchthat
lim
x!x
0
f.x/a
0
a
1
.xx
0
/
xx
0
D0;
thena
0
Df.x
0
/,f
0
isdifferentiableatx
0
,andf
0
.x
0
/Da
1
.
(b)
Giveacounterexampletothefollowingstatement:Iffandf
0
arecontinuous
atx
0
andthereareconstantsa
0
,a
1
,anda
2
suchthat
lim
x!x
0
f.x/a
0
a
1
.xx
0
/a
2
.xx
0
/
2
.xx
0
/2
D0;
thenf
00
.x
0
/exists.
4. (a)
Prove:iff
00
.x
0
/exists,then
lim
h!0
f.x
0
Ch/2f.x
0
/Cf.x
0
h/
h2
Df
00
.x
0
/:
RasterEdge Product Renewal and Update
VB.NET Write: Add Image to PDF; VB.NET Protect: Add Password to PDF; VB.NET Form: extract value 4. Order email. Our support team will send you the purchase link.
C# Create PDF from PowerPoint Library to convert pptx, ppt to PDF
Free online PowerPoint to PDF converter without email. C#.NET Demo Code: Convert PowerPoint to PDF in C#.NET Application. Add necessary references:
108 Chapter2
DifferentialCalculusofFunctionsofOneVariable
(b)
Prove orgivea counterexample: If f thelimitin
(a)
exists, thenso does
f
00
.x
0
/,andtheyareequal.
5.
Afunctionfhasasimplezero(orazeroofmultiplicity1)atx
0
iffisdifferentiable
inaneighborhoodofx
0
andf.x
0
/D0,whilef
0
.x
0
/¤0.
(a)
Provethatf hasasimplezeroatx
0
ifandonlyif
f.x/Dg.x/.xx
0
/;
wheregiscontinuousatx
0
x
0
,andg.x
0
/¤0.
(b)
Giveanexampleshowingthatgin
(a)
neednotbedifferentiableatx
0
.
6.
0
iff istwicedif-
ferentiableonaneighborhoodofx
0
andf.x
0
/Df
0
.x
0
/D0,whilef
00
.x
0
/ ¤ 0.
(a)
0
ifandonlyif
f.x/Dg.x/.xx
0
/
2
;
wheregiscontinuousatx
0
ofx
0
,g.x
0
/¤0,and
lim
x!x
0
.xx
0
/g
0
.x/D0:
(b)
Giveanexampleshowingthatgin
(a)
neednotbedifferentiableatx
0
.
7.
Letnbeapositiveinteger. Afunctionf hasazeroofmultiplicitynatx
0
iff
is ntimes differentiableona neighborhoodofx
0
, f.x
0
/ D f0.x
0
/ D  D
f.n1/.x
0
/ D 0andf.n/.x
0
/ ¤ 0. Provethatf hasazeroofmultiplicitynat
x
0
ifandonlyif
f.x/Dg.x/.xx
0
/
n
;
wheregiscontinuousatx
0
x
0
,g.x
0
/¤0,and
lim
x!x
0
.xx
0
/
j
g
.j/
.x/D0; 1j j n1:
H
INT
:UseExercise2.5.6andinduction:
8. (a)
Let
Q.x/D˛
0
1
.xx
0
/CC˛
n
.xx
0
/
n
beapolynomialofdegreensuchthat
lim
x!x
0
Q.x/
.xx
0
/n
D0:
Showthat˛
0
1
DD˛
n
D0.
C# Create PDF from Excel Library to convert xlsx, xls to PDF in C#
to PDF converter without email. Quick integrate online C# source code into .NET class. C# Demo Code: Convert Excel to PDF in Visual C# .NET Project. Add necessary
C# Create PDF from Word Library to convert docx, doc to PDF in C#.
Free online Word to PDF converter without email. C#.NET Sample Code: Convert Word to PDF in C#.NET Project. Add necessary references:
Section2.5
Taylor’sTheorem
109
(b)
Supposethatf isntimesdifferentiableatx
0
andpisapolynomial
p.x/Da
0
Ca
1
.xx
0
/CCa
n
.xx
0
/
n
ofdegreensuchthat
lim
x!x
0
f.x/p.x/
.xx
0
/n
D0:
Showthat
a
r
D
f
.r/
.x
0
/
if 0rnI
thatis,pDT
n
0
.
9.
Showthatiff
.n/
.x
0
/andg
.n/
.x
0
/existand
lim
x!x
0
f.x/g.x/
.xx
0
/n
D0;
thenf
.r/
.x
0
/Dg
.r/
.x
0
/,0rn.
10. (a)
LetF
n
, G
n
,andH
n
0
off,g, and
theirproducth D fg. ShowthatH
n
canbeobtainedbymultiplyingF
n
byG
n
andretainingonlythepowersofxx
0
throughthenth. H
INT
:Use
Exercise2.5.8.b/:
(b)
Usethemethodsuggestedby
(a)
tocomputeh
.r/
.x
0
/,rD1;2;3;4.
(i)
h.x/De
x
sinx; x
0
D0
(ii)
h.x/D.cosx=2/.logx/; x
0
D1
(iii)
h.x/Dx
2
cosx; x
0
D=2
(iv)
h.x/D.1Cx/
1
e
x
; x
0
D0
11. (a)
Itcanbeshownthatifgisntimesdifferentiableatxandf isntimesdif-
ferentiableatg.x/,thenthecompositefunctionh.x/D f.g.x//isntimes
differentiableatxand
h
.n/
.x/D
n
X
rD1
f
.r/
.g.x//
X
r
r
1
Šr
n
Š
g
0
.x/
r
1
g
00
.x/
r
2

g
.n/
.x/
!
r
n
where
P
r
isoveralln-tuples.r
1
;r
2
;:::;r
n
r
1
Cr
2
CCr
n
Dr
and
r
1
C2r
2
CCnr
n
Dn:
Justifythefollowingalternativemethodforcomputingthederivativesofa
compositefunctionatapointx
0
:
110 Chapter2
DifferentialCalculusofFunctionsofOneVariable
LetF
n
0
Dg.x
0
/,andletG
n
and
H
n
0
. ShowthatH
n
can
beobtainedbysubstitutingG
n
intoF
n
andretainingonlypowersofxx
0
throughthenth.H
INT
:SeeExercise2.5.8.b/:
(b)
Computetheﬁrstfourderivativesofh.x/Dcos.sinx/atx
0
D0,usingthe
methodsuggestedby
(a)
.
12. (a)
Ifg.x
0
/¤0andg
.n/
.x
0
/exists,thenthereciprocalhD1=gisalsontimes
differentiableatx
0
,byExercise2.5.11
(a)
,withf.x/D1=x.LetG
n
andH
n
0
.UseExercise2.5.11
(a)
to
provethatifg.x
0
/D1,thenH
n
canbeobtainedbyexpandingthepolynomial
Xn
rD1
Œ1G
n
.x/
r
inpowersofxx
0
andretainingonlypowersthroughthenth.
(b)
Usethemethodof
(a)
tocomputetheﬁrstfourderivativesofthefollowing
functionsatx
0
.
(i)
h.x/Dcscx; x
0
D=2
(ii)
h.x/D.1CxCx2/1; x
0
D0
(iii)
h.x/Dsecx; x
0
D=4
(iv)
h.x/DŒ1Clog.1Cx/
1
; x
0
D0
(c)
UseExercise2.5.10tojustifythefollowingalternativeprocedureforobtaining
H
n
,againassumingthatg.x
0
/D1:If
G
n
.x/D1Ca
1
.xx
0
/CCa
n
.xx
0
/
n
(where,ofcourse,a
r
Dg
.r/
.x
0
/=rŠ/and
H
n
.x/Db
0
Cb
1
.xx
0
/CCb
n
.xx
0
/
n
;
then
b
0
D1; b
k
D
Xk
rD1
a
r
b
kr
; 1kn:
13.
Determinewhetherx
0
D0isalocalmaximum,localminimum,orneither.
(a)
f.x/Dx
2
e
x
3
(b)
f.x/Dx
3
e
x
2
(c)
f.x/D
1Cx
2
1Cx3
(d)
f.x/D
1Cx
3
1Cx2
(e)
f.x/Dx2sin
3
xCx2cosx
(f)
f.x/Dex
2
sinx
(g)
f.x/De
x
sinx
2
(h)
f.x/De
x
2
cosx
14.
Giveanexampleofafunctionthathaszeroderivativesofallordersatalocalmini-
mumpoint.