c# pdf free : Add link to pdf application control utility html web page windows visual studio TRENCH_REAL_ANALYSIS19-part236

182 Chapter4
InfiniteSequencesandSeries
Example4.1.4
Ifs
n
D Œ1C.1/
n
n, thenfs
n
gisboundedbelow.s
n
 0/but
unboundedabove,andfs
n
gisboundedabove.s
n
0/butunboundedbelow.Ifs
n
D
.1/
n
,thenfs
n
gisbounded.Ifs
n
D.1/
n
n,thenfs
n
gisnotboundedaboveorbelow.
Theorem4.1.4
Aconvergentsequenceisbounded:
Proof
BytakingD1in(4.1.2),weseethatiflim
n!1
s
n
Ds,thenthereisaninteger
Nsuchthat
js
n
sj<1 if nN:
Therefore,
js
n
jDj.s
n
s/Csjjs
n
sjCjsj<1Cjsj if nN;
and
js
n
jmaxfjs
0
j;js
1
j;:::;js
N1
j;1Cjsjg
foralln,sofs
n
gisbounded.
MonotonicSequences
Definition4.1.5
Asequencefs
n
gisnondecreasingifs
n
 s
n1
foralln,ornonin-
creasingifs
n
s
n1
foralln:Amonotonicsequenceisasequencethatiseithernonin-
creasingornondecreasing.Ifs
n
>s
n1
foralln,thenfs
n
gisincreasing,whileifs
n
<s
n1
foralln,fs
n
gisdecreasing.
Theorem4.1.6
(a)
Iffs
n
gisnondecreasing;thenlim
n!1
s
n
Dsupfs
n
g:
(b)
Iffs
n
gisnonincreasing;thenlim
n!1
s
n
Dinffs
n
g:
Proof (a)
.LetˇDsupfs
n
g.Ifˇ<1,Theorem1.1.3impliesthatif>0then
ˇ<s
N
ˇ
forsomeintegerN.Sinces
N
s
n
ˇifnN,itfollowsthat
ˇ<s
n
ˇ if nN:
Thisimpliesthatjs
n
ˇj<ifnN,solim
n!1
s
n
Dˇ,byDefinition4.1.1.IfˇD1
andbisanyrealnumber,thens
N
>bforsomeintegerN. Thens
n
>bfornN,so
lim
n!1
s
n
D1.
Weleavetheproofof
(b)
toyou(Exercise4.1.8)
Example4.1.5
Ifs
0
D1ands
n
D1es
n1
,then0<s
n
1foralln,byinduction.
Since
s
nC1
s
n
D.e
s
n
e
s
n1
/ if n1;
Add link to pdf - insert, remove PDF links in C#.net, ASP.NET, MVC, Ajax, WinForms, WPF
Free C# example code is offered for users to edit PDF document hyperlink (url), like inserting and deleting
pdf link; add links to pdf
Add link to pdf - VB.NET PDF url edit library: insert, remove PDF links in vb.net, ASP.NET, MVC, Ajax, WinForms, WPF
Help to Insert a Hyperlink to Specified PDF Document Page
convert excel to pdf with hyperlinks; add url to pdf
Section4.1
SequencesofRealNumbers
183
themeanvaluetheorem(Theorem2.3.11)impliesthat
s
nC1
s
n
De
t
n
.s
n
s
n1
/ if n1;
(4.1.3)
wheret
n
isbetweens
n1
ands
n
.Sinces
1
s
0
D1=e<0,itfollowsbyinductionfrom
(4.1.3)thats
nC1
s
n
<0foralln.Hence,fs
n
gisboundedanddecreasing,andtherefore
convergent.
Sequences ofFunctionalValues
ThenexttheoremenablesustoapplythetheoryoflimitsdevelopedinSection2.1tosome
sequences.Weleavetheprooftoyou(Exercise4.1.13).
Theorem4.1.7
Letlim
x!1
f.x/DL;whereLisintheextendedreals;andsuppose
thats
n
Df.n/forlargen:Then
lim
n!1
s
n
DL:
Example4.1.6
Let
s
n
D
logn
n
and f.x/D
logx
x
:
ByL’Hospital’srule,
lim
x!1
logx
x
D lim
x!1
1=x
1
D0:
Hence,lim
n!1
logn=nD0.
Example4.1.7
Lets
n
D.1C1=n/
n
and
f.x/D
1C
1
x
x
De
xlog.1C1=x/
:
ByL’Hospital’srule,
lim
x!1
xlog
1C
1
x
D lim
x!1
log.1C1=x/
1=x
D lim
x!1
1
x2
1
1C1=x
1=x2
D1I
hence,
lim
x!1
1C
1
x
x
De
1
De and
lim
n!1
1C
1
n
n
De:
Thelastequationissometimesusedtodefinee.
C# PDF Library SDK to view, edit, convert, process PDF file for C#
editing PDF document hyperlink (url) and quick navigation link in PDF bookmark. C#.NET: Edit PDF Metadata. PDF SDK for .NET allows you to read, add, edit, update
pdf links; add a link to a pdf
RasterEdge .NET Document Imaging Trial Package Download Link.
Extract; C# Read: PDF Image Extract; C# Write: Insert text into PDF; C# Write: Add Image to PDF; C# Protect: Add Password to PDF; C#
adding a link to a pdf in preview; add links to pdf in acrobat
184 Chapter4
InfiniteSequencesandSeries
Example4.1.8
Supposethats
n
D
n
with>0,andletf.x/D
x
De
xlog
.Since
lim
x!1
e
xlog
D
8
ˆ
<
ˆ
:
0;
iflog<0 .0<<1/;
1;
iflogD0 .D1/;
1; iflog>0 .>1/;
itfollowsthat
lim
n!1
n
D
8
<
:
0;
0<<1;
1;
D1;
1; >1:
Therefore,
lim
n!1
r
n
D
8
<
:
0;
1<r<1;
1;
rD1;
1; r>1;
aresultthatwewilluseoften.
AUsefulLimitTheorem
Thenexttheoremenablesustoinvestigateconvergenceofsequencesbyexaminingsimpler
sequences.ItisanalogoustoTheorem2.1.4.
Theorem4.1.8
Let
lim
n!1
s
n
Ds and
lim
n!1
t
n
Dt;
(4.1.4)
wheresandtarefinite:Then
lim
n!1
.cs
n
/Dcs
(4.1.5)
ifcisaconstantI
lim
n!1
.s
n
Ct
n
/DsCt;
(4.1.6)
lim
n!1
.s
n
t
n
/Dst;
(4.1.7)
lim
n!1
.s
n
t
n
/Dst;
(4.1.8)
and
lim
n!1
s
n
t
n
D
s
t
(4.1.9)
ift
n
isnonzeroforallnandt¤0.
Proof
Weprove(4.1.8)and(4.1.9)andleavetheresttoyou(Exercises4.1.15and
4.1.17).For(4.1.8),wewrite
s
n
t
n
stDs
n
t
n
st
n
Cst
n
stD.s
n
s/t
n
Cs.t
n
t/I
C# PDF insert image Library: insert images into PDF in C#.net, ASP
C#.NET PDF SDK - Add Image to PDF Page in C#.NET. How to Insert & Add Image, Picture or Logo on PDF Page Using C#.NET. Add Image to PDF Page Using C#.NET.
pdf link open in new window; add email link to pdf
VB.NET PDF insert image library: insert images into PDF in vb.net
VB.NET PDF - Add Image to PDF Page in VB.NET. Guide VB.NET Programmers How to Add Images in PDF Document Using XDoc.PDF SDK for VB.NET.
add hyperlink to pdf in preview; clickable links in pdf
Section4.1
SequencesofRealNumbers
185
hence,
js
n
t
n
stjjs
n
sjjt
n
jCjsjjt
n
tj:
(4.1.10)
Sinceft
n
gconverges,itisbounded(Theorem4.1.4).Therefore,thereisanumberRsuch
thatjt
n
jRforalln,and(4.1.10)impliesthat
js
n
t
n
stjRjs
n
sjCjsjjt
n
tj:
(4.1.11)
From(4.1.4),if>0thereareintegersN
1
andN
2
suchthat
js
n
sj< if nN
1
(4.1.12)
and
jt
n
tj< if nN
2
:
(4.1.13)
IfN D D max.N
1
;N
2
/, then(4.1.12)and(4.1.13)bothholdwhenn  N,and(4.1.11)
impliesthat
js
n
t
n
stj.RCjsj/ if nN:
Thisproves(4.1.8).
Nowconsider(4.1.9)inthespecialcasewheres
n
D1forallnandt¤0;thus,wewant
toshowthat
lim
n!1
1
t
n
D
1
t
:
First,observethatsincelim
n!1
t
n
Dt¤0,thereisanintegerMsuchthatjt
n
jjtj=2
ifnM. Toseethis,weapplyDefinition4.1.1withDjtj=2;thus,thereisaninteger
Msuchthatjt
n
tj<jt=2jifnM.Therefore,
jt
n
jDjtC.t
n
t/jjjtjjt
n
tjj
jtj
2
if nM:
If>0,chooseN
0
sothatjt
n
tj<ifnN
0
,andletN Dmax.N
0
;M/.Then
ˇ
ˇ
ˇ
ˇ
1
t
n
1
t
ˇ
ˇ
ˇ
ˇ
D
jtt
n
j
jt
n
jjtj
2
jtj2
if nNI
hence,lim
n!1
1=t
n
D1=t. Nowweobtain(4.1.9)inthegeneralcasefrom(4.1.8)with
ft
n
greplacedbyf1=t
n
g.
Example4.1.9
Todeterminethelimitofthesequencedefinedby
s
n
D
1
n
sin
n
4
C
2.1C3=n/
1C1=n
;
weapplytheapplicablepartsofTheorem4.1.8asfollows:
lim
n!1
s
n
D lim
n!1
1
n
sin
n
4
C
2
h
lim
n!1
1C3lim
n!1
.1=n/
i
lim
n!1
1C lim
n!1
.1=n/
D0C
2.1C30/
1C0
D2:
VB.NET PDF Password Library: add, remove, edit PDF file password
VB: Add Password to PDF with Permission Settings Applied. This VB.NET example shows how to add PDF file password with access permission setting.
add hyperlink in pdf; add link to pdf
C# PDF Password Library: add, remove, edit PDF file password in C#
C# Sample Code: Add Password to PDF with Permission Settings Applied in C#.NET. This example shows how to add PDF file password with access permission setting.
add links in pdf; add hyperlinks to pdf online
186 Chapter4
InfiniteSequencesandSeries
Example4.1.10
Sometimespreliminarymanipulationsarenecessarybeforeapplying
Theorem4.1.8.Forexample,
lim
n!1
.n=2/Clogn
3nC4
p
n
D lim
n!1
1=2C.logn/=n
3C4n1=2
D
lim
n!1
1=2C lim
n!1
.logn/=n
lim
n!1
3C4lim
n!1
n
1=2
D
1=2C0
3C0
(seeExample4.1.6)
D
1
6
:
Example4.1.11
Supposethat1<r<1and
s
0
D1; s
1
D1Cr; s
2
D1CrCr
2
;:::; s
n
D1CrCCr
n
:
Since
s
n
rs
n
D.1CrCCr
n
/.rCr
2
CCr
nC1/
D1r
nC1
;
itfollowsthat
s
n
D
1rnC1
1r
:
(4.1.14)
FromExample4.1.8,lim
n!1
rnC1 D0,so(4.1.14)andTheorem4.1.8yield
lim
n!1
.1CrCCr
n
/D
1
1r
if 1<r<1:
Equations(4.1.5)–(4.1.8)arevalidevenifsandtarearbitraryextendedreals,provided
thattheirrightsidesaredefinedintheextendedreals(Exercises4.1.16,4.1.18,and4.1.21);
(4.1.9)isvalidifs=tisdefinedintheextendedrealsandt¤0(Exercise4.1.22).
Example4.1.12
If1<r<1,then
lim
n!1
r
n
D
lim
n!1
r
n
lim
n!1
D
0
1
D0;
from(4.1.9)andExample4.1.8.However,ifr>1,(4.1.9)andExample4.1.8yield
lim
n!1
r
n
D
lim
n!1
r
n
lim
n!1
D
1
1
;
anindeterminateform.Ifr1,thenlim
n!1
r
n
doesnotexistintheextendedreals,so
(4.1.9)isnotapplicable. Theorem4.1.7doesnothelpeither,sincethereisnoelementary
functionfsuchthatf.n/Dr
n
=nŠ.However,thefollowingargumentshowsthat
How to C#: Basic SDK Concept of XDoc.PDF for .NET
You may add PDF document protection functionality into your C# of PDF document, including editing PDF url links and quick navigation link in bookmark
add hyperlink to pdf acrobat; adding links to pdf
VB.NET PDF: Basic SDK Concept of XDoc.PDF
You may add PDF document protection functionality into your VB.NET of PDF document, including editing PDF url links and quick navigation link in bookmark
add hyperlink to pdf; convert a word document to pdf with hyperlinks
Section4.1
SequencesofRealNumbers
187
lim
n!1
r
n
D0; 1<r<1:
(4.1.15)
ThereisanintegerMsuchthat
jrj
n
<
1
2
if nM:
LetKDrm=MŠ.Then
jrj
n
K
jrj
MC1
jrj
MC2

jrj
n
<K
1
2
nM
; n>M:
Given>0,chooseN MsothatK=2
NM
<. Thenjrj
n
=nŠ<ifnN,which
verifies(4.1.15).
LimitsSuperiorandInferior
Requiringasequencetoconvergemaybeunnecessarilyrestrictiveinsomesituations.Of-
ten,usefulresultscanbeobtainedfromassumptionsonthelimitsuperiorandlimitinferior
ofasequence,whichweconsidernext.
Theorem4.1.9
(a)
Iffs
n
gisboundedaboveanddoesnotdivergeto1;thenthereisauniquereal
number
ssuchthat;if>0;
s
n
<
sC forlargen
(4.1.16)
and
s
n
>
s forinfinitelymanyn:
(4.1.17)
(b)
Iffs
n
g is boundedbelowanddoesnotdivergeto1;thenthere isauniquereal
numbers
suchthat;if>0;
s
n
>s
 forlargen
(4.1.18)
and
s
n
<s
C forinfinitelymanyn:
(4.1.19)
Proof
Wewillprove
(a)
andleavetheproofof
(b)
toyou(Exercise4.1.23). Since
fs
n
gisboundedabove,thereisanumberˇsuchthats
n
<ˇforalln.Sincefs
n
gdoesnot
divergeto1,thereisanumber˛suchthats
n
>˛forinfinitelymanyn.Ifwedefine
M
k
Dsupfs
k
;s
kC1
;:::;s
kCr
;:::g;
188 Chapter4
InfiniteSequencesandSeries
then˛M
k
ˇ,sofM
k
gisbounded.SincefM
k
gisnonincreasing(why?),itconverges,
byTheorem4.1.6.Let
sD lim
k!1
M
k
:
(4.1.20)
If>0,thenM
k
<
sCforlargek,andsinces
n
M
k
fornk,
ssatisfies(4.1.16).
If(4.1.17)werefalseforsomepositive,therewouldbeanintegerKsuchthat
s
n
s if nK:
However,thisimpliesthat
M
k
s if kK;
whichcontradicts(4.1.20).Therefore,
shasthestatedproperties.
Nowwemustshowthat
sistheonlyrealnumberwiththestatedproperties.Ift<
s,the
inequality
s
n
<tC
st
2
D
s
st
2
cannotholdforalllargen,becausethiswouldcontradict(4.1.17)with D.
st/=2. If
s<t,theinequality
s
n
>t
t
s
2
D
sC
t
s
2
cannotholdforinfinitelymanyn,becausethiswouldcontradict(4.1.16)withD.t
s/=2.
Therefore,
sistheonlyrealnumberwiththestatedproperties.
Definition4.1.10
Thenumbers
sands
definedinTheorem4.1.9arecalledthelimit
superiorandlimitinferior,respectively,offs
n
g,anddenotedby
sD
lim
n!1
s
n
and s
D lim
n!1
s
n
:
Wealsodefine
lim
n!1
s
n
D
1
iffs
n
gisnotboundedabove;
lim
n!1
s
n
D1
if lim
n!1
s
n
D1;
lim
n!1
s
n
D1
iffs
n
gisnotboundedbelow;
and
lim
n!1
s
n
D
1
if lim
n!1
s
n
D1:
Theorem4.1.11
Everysequencefs
n
gofrealnumbershasauniquelimitsuperior;
s;
andauniquelimitinferior;s
,intheextendedreals;and
s
s:
(4.1.21)
Section4.1
SequencesofRealNumbers
189
Proof
Theexistenceanduniquenessof
sands
followfromTheorem4.1.9andDefini-
tion4.1.10.If
sands
arebothfinite,then(4.1.16)and(4.1.18)implythat
s
<
sC
forevery>0,whichimplies(4.1.21).Ifs
D1or
sD1,then(4.1.21)isobvious.If
s
D1or
sD1,then(4.1.21)followsimmediatelyfromDefinition4.1.10.
Example4.1.13
lim
n!1
r
n
D
8
<
:
1; jrj>1;
1;
jrjD1;
0;
jrj<1I
and
lim
n!1
r
n
D
8
ˆ
ˆ
ˆ
ˆ
<
ˆ
ˆ
ˆ
ˆ
:
1; r>1;
1; rD1;
0; jrj<1;
1; rD1;
1; r<1:
Also,
lim
n!1
n
2
D lim
n!1
n
2
D1;
lim
n!1
.1/
n
1
1
n
D1;
lim
n!1
.1/
n
n
1
n
D1;
and
lim
n!1
Œ1C.1/
n
n
2
D1; lim
n!1
Œ1C.1/
n
n
2
D0:
Theorem4.1.12
Iffs
n
gisasequenceofrealnumbers,then
lim
n!1
s
n
Ds
(4.1.22)
ifandonlyif
lim
n!1
s
n
D lim
n!1
s
n
Ds:
(4.1.23)
Proof
IfsD˙1,theequivalenceof(4.1.22)and(4.1.23)followsimmediatelyfrom
theirdefinitions. Iflim
n!1
s
n
D s(finite),thenDefinition4.1.1impliesthat(4.1.16)–
(4.1.19)holdwith
sands
replacedbys. Hence,(4.1.23)followsfromtheuniquenessof
sands
. Fortheconverse,supposethat
sDs
andletsdenotetheircommonvalue. Then
(4.1.16)and(4.1.18)implythat
s<s
n
<sC
forlargen,and(4.1.22)followsfromDefinition4.1.1andtheuniquenessoflim
n!1
s
n
(Theorem4.1.2).
190 Chapter4
InfiniteSequencesandSeries
Cauchy’sConvergenceCriterion
TodeterminefromDefinition4.1.1whetherasequencehasalimit,itisnecessarytoguess
whatthelimitis. (Thisisparticularlydifficultifthesequencediverges!) ) TouseTheo-
rem4.1.12forthispurposerequiresfinding
sands
. Thefollowingconvergencecriterion
hasneitherofthesedefects.
Theorem4.1.13(Cauchy’sConvergenceCriterion)
Asequencefs
n
gof
realnumbersconvergesifandonlyif;forevery>0;thereisanintegerNsuchthat
js
n
s
m
j< if m;nN:
(4.1.24)
Proof
Supposethatlim
n!1
s
n
Dsand>0.ByDefinition4.1.1,thereisaninteger
Nsuchthat
js
r
sj<
2
if rN:
Therefore,
js
n
s
m
jDj.s
n
s/C.ss
m
/jjs
n
sjCjss
m
j< if n;mN:
Therefore,thestatedconditionisnecessaryforconvergenceoffs
n
g.Toseethatitissuffi-
cient,wefirstobservethatitimpliesthatfs
n
gisbounded(Exercise4.1.27),so
sands
are
finite(Theorem4.1.9). Nowsupposethat >0andN N satisfies(4.1.24). . From(4.1.16)
and(4.1.17),
js
n
sj<;
(4.1.25)
forsomeintegern>N and,from(4.1.18)and(4.1.19),
js
m
s
j<
(4.1.26)
forsomeintegerm>N.Since
j
ss
jDj.
ss
n
/C.s
n
s
m
/C.s
m
s
/j
j
ss
n
jCjs
n
s
m
jCjs
m
s
j;
(4.1.24)–(4.1.26)implythat
j
ss
j<3:
Sinceisanarbitrarypositivenumber, thisimpliesthat
s D D s
, sofs
n
gconverges, by
Theorem4.1.12.
Example4.1.14
Supposethat
jf
0
.x/jr<1; 1<x<1:
(4.1.27)
Showthattheequation
xDf.x/
(4.1.28)
hasauniquesolution.
Section4.1
SequencesofRealNumbers
191
Solution
Toseethat(4.1.28)cannothavemorethanonesolution,supposethatx D
f.x/andx
0
Df.x
0
/.From(4.1.27)andthemeanvaluetheorem(Theorem2.3.11),
xx
0
Df
0
.c/.xx
0
/
forsomecbetweenxandx
0
.Thisand(4.1.27)implythat
jxx
0
jrjxx
0
j:
Sincer<1,xDx
0
.
Wewillnowshowthat(4.1.28)hasasolution.Withx
0
arbitrary,define
x
n
Df.x
n1
/; n1:
(4.1.29)
Wewillshowthatfx
n
gconverges.From(4.1.29)andthemeanvaluetheorem,
x
nC1
x
n
Df.x
n
/f.x
n1
/Df
0
.c
n
/.x
n
x
n1
/;
wherec
n
isbetweenx
n1
andx
n
.Thisand(4.1.27)implythat
jx
nC1
x
n
jrjx
n
x
n1
j if n1:
(4.1.30)
Theinequality
jx
nC1
x
n
jr
n
jx
1
x
0
j if n0;
(4.1.31)
followsbyinductionfrom(4.1.30).Now,ifn>m,
jx
n
x
m
jDj.x
n
x
n1
/C.x
n1
x
n2
/CC.x
mC1
x
m
/j
jx
n
x
n1
jCjx
n1
x
n2
jCCjx
mC1
x
m
j;
and(4.1.31)yields
jx
n
x
m
jjx
1
x
0
jr
m
.1CrCCr
nm1
/:
(4.1.32)
InExample4.1.11wesawthatthesequencefs
k
gdefinedby
s
k
D1CrCCr
k
convergesto1=.1r/ifjrj<1;moreover,sincewehaveassumedherethat0<r<1,
fs
k
gisnondecreasing,andtherefores
k
<1=.1r/forallk.Therefore,(4.1.32)yields
jx
n
x
m
j<
jx
1
x
0
j
1r
r
m
if n>m:
Nowitfollowsthat
jx
n
x
m
j<
jx
1
x
0
j
1r
r
N
if n;m>N;
and,sincelim
N!1
r
N
D0,fx
n
gconverges,byTheorem4.1.13.IfbxDlim
n!1
x
n
,then
(4.1.29)andthecontinuityoff implythatbxDf.bx/.
Documents you may be interested
Documents you may be interested