c# pdf free : Add hyperlink pdf file SDK software service wpf winforms windows dnn TRENCH_REAL_ANALYSIS29-part247

282 Chapter5
Real-ValuedFunctionsof
n
Variables
MembersofRhavedualinterpretations:geometric,aspointsontherealline,andalge-
braic,asrealnumbers. Weassumethatyouarefamiliarwiththegeometricinterpretation
ofmembersofR
2
andR
3
astherectangularcoordinatesofpointsinaplaneandthree-
dimensionalspace,respectively.AlthoughR
n
cannotbevisualizedgeometricallyifn4,
geometricideasfromR, R
2
,andR
3
oftenhelpustointerpretthepropertiesofR
n
for
arbitraryn.
AswesaidinSection1.3, theideaofneighborhoodisalwaysassociatedwithsome
definitionof“closeness”ofpoints.Thefollowingdefinitionimposesanalgebraicstructure
onR
n
,intermsofwhichthedistancebetweentwopointscanbedefinedinanaturalway.
Inaddition,thisalgebraicstructurewillbeusefullaterforotherpurposes.
Definition5.1.1
Thevectorsumof
XD.x
1
;x
2
;:::;x
n
/ and YD.y
1
;y
2
;:::;y
n
/
is
XCYD.x
1
Cy
1
;x
2
Cy
2
;:::;x
n
Cy
n
/:
(5.1.1)
Ifaisarealnumber,thescalarmultipleofXbyais
aXD.ax
1
;ax
2
;:::;ax
n
/:
(5.1.2)
Notethat“C”hastwodistinctmeaningsin(5.1.1):ontheleft,“C”standsforthenewly
definedadditionofmembersofR
n
and,ontheright,foradditionofrealnumbers.However,
thiscanneverleadtoconfusion,sincethemeaningof“C”canalwaysbededucedfrom
thesymbolsoneithersideofit.Asimilarcommentappliestotheuseofjuxtapositionto
indicatescalarmultiplicationontheleftof(5.1.2)andmultiplicationofrealnumberson
theright.
Example5.1.1
InR
4
,let
XD.1;2;6;5/ and YD
3;5;4;
1
2
:
Then
XCYD
4;7;10;
11
2
and
6XD.6;12;36;30/:
Weleavetheproofofthefollowingtheoremtoyou(Exercise5.1.2).
Add hyperlink pdf file - insert, remove PDF links in C#.net, ASP.NET, MVC, Ajax, WinForms, WPF
Free C# example code is offered for users to edit PDF document hyperlink (url), like inserting and deleting
pdf link to email; add hyperlinks to pdf online
Add hyperlink pdf file - VB.NET PDF url edit library: insert, remove PDF links in vb.net, ASP.NET, MVC, Ajax, WinForms, WPF
Help to Insert a Hyperlink to Specified PDF Document Page
add hyperlink pdf document; adding hyperlinks to pdf
Section5.1
Structureof
R
n
283
Theorem5.1.2
IfX;Y;andZareinR
n
andaandbarerealnumbers;then
(a)
XCYDYCX.vectoradditioniscommutative/:
(b)
.XCY/CZDXC.YCZ/.vectoradditionisassociative/:
(c)
Thereisauniquevector0;calledthezerovector;suchthatXC0DXforallXin
Rn:
(d)
ForeachXinRthereisauniquevectorXsuchthatXC.X/D0:
(e)
a.bX/D.ab/X:
(f)
.aCb/XDaXCbX:
(g)
a.XCY/DaXCaY:
(h)
1XDX:
Clearly,0D.0;0;:::;0/and,ifXD.x
1
;x
2
;:::;x
n
/,then
XD.x
1
;x
2
;:::;x
n
/:
WewriteXC.Y/asXY.Thepoint0iscalledtheorigin.
AnonemptysetV DfX;Y;Z;:::g,togetherwithrulessuchas(5.1.1),associatinga
uniquememberofV witheveryorderedpairofitsmembers, , and(5.1.2),associatinga
uniquememberofV witheveryrealnumberandmemberofV,issaidtobeavectorspace
ifithasthepropertieslistedinTheorem5.1.2. Themembersofavectorspacearecalled
vectors.WhenwewishtoemphasizethatweareregardingamemberofR
n
aspartofthis
algebraicstructure,wewillspeakofitasavector;otherwise,wewillspeakofitasapoint.
Length, Distance,andInnerProduct
Definition5.1.3
ThelengthofthevectorXD.x
1
;x
2
;:::;x
n
/is
jXjD.x
2
1
Cx
2
2
CCx
2
n
/
1=2
:
ThedistancebetweenpointsXandYisjXYj;inparticular,jXjisthedistancebetween
Xandtheorigin.IfjXjD1,thenXisaunitvector.
IfnD1,thisdefinitionoflengthreducestothefamiliarabsolutevalue,andthedistance
betweentwopointsisthelengthoftheintervalhavingthemasendpoints;fornD2and
nD3,thelengthanddistanceofDefinition5.1.3reducetothefamiliardefinitionsforthe
planeandthree-dimensionalspace.
Example5.1.2
Thelengthsofthevectors
XD.1;2;6;5/ and YD
3;5;4;
1
2
are
jXjD.1
2
C.2/
2
C6
2
C5
2
/
1=2
D
p
66
How to C#: Basic SDK Concept of XDoc.PDF for .NET
You may add PDF document protection functionality into your C# program. can edit PDF password and digital signature, and set PDF file permission Hyperlink Edit.
add hyperlink pdf file; add a link to a pdf file
VB.NET PDF: Basic SDK Concept of XDoc.PDF
You may add PDF document protection functionality into your VB.NET program. edit PDF password and digital signature, and set PDF file permission Hyperlink Edit.
add hyperlink to pdf in preview; add email link to pdf
284 Chapter5
Real-ValuedFunctionsof
n
Variables
and
jYjD.3
2
C.5/
2
C4
2
C.
1
2
/
2
/
1=2
D
p
201
2
:
ThedistancebetweenXandYis
jXYjD..13/
2
C.2C5/
2
C.64/
2
C.5
1
2
/
2
/
1=2
D
p
149
2
:
Definition5.1.4
TheinnerproductXYofXD.x
1
;x
2
;:::;x
n
/andYD.y
1
;y
2
;:::;y
n
/
is
XYDx
1
y
1
Cx
2
y
2
CCx
n
y
n
:
Lemma5.1.5(Schwarz’sInequality)
IfXandYareanytwovectorsinR
n
;
then
jXYjjXjjYj;
(5.1.3)
withequalityifandonlyifoneofthevectorsisascalarmultipleoftheother:
Proof
IfYD0,thenbothsidesof(5.1.3)are0,so(5.1.3)holds,withequality.Inthis
case,YD0X.NowsupposethatY¤0andtisanyrealnumber.Then
0
Xn
iD1
.x
i
ty
i
/
2
D
Xn
iD1
x
2
i
2t
Xn
iD1
x
i
y
i
Ct
2
Xn
iD1
y
2
i
DjXj
2
2.XY/tCt
2
jYj
2
:
(5.1.4)
Thelastexpressionisasecond-degreepolynomialpint.Fromthequadraticformula,the
zerosofpare
tD
.XY/˙
p
.XY/jXj2jYj2
jYj2
:
Hence,
.XY/
2
jXj
2
jYj
2
;
(5.1.5)
becauseifnot,thenpwouldhavetwodistinctrealzerosandthereforebenegativebetween
them(Figure5.1.1),contradictingtheinequality(5.1.4). Takingsquarerootsin(5.1.5)
yields(5.1.3)ifY¤0.
IfX D D tY, , thenjXYj D jXjjYj D jtjjYj(verify), , soequalityholdsin(5.1.3).
Conversely,ifequalityholdsin(5.1.3),thenphastherealzerot
0
D.XY/=jYk2,and
Xn
iD1
.x
i
t
0
y
i
/
2
D0
from(5.1.4);therefore,XDt
0
Y.
C# PDF Library SDK to view, edit, convert, process PDF file for C#
offers robust APIs for editing PDF document hyperlink (url) and SDK for .NET allows you to read, add, edit, update, and delete PDF file metadata, like
pdf edit hyperlink; pdf link to specific page
VB.NET PDF Library SDK to view, edit, convert, process PDF file
RasterEdge PDF SDK for .NET package offers robust APIs for editing PDF document hyperlink (url), which provide quick access to the website or other file.
clickable links in pdf; add hyperlinks to pdf
Section5.1
Structureof
R
n
285
y
t
y = p(t)
r
1
r
2
Figure5.1.1
Theorem5.1.6(TriangleInequality)
IfXandYareinR
n
;then
jXCYjjXjCjYj;
(5.1.6)
withequalityifandonlyifoneofthevectorsisanonnegativemultipleoftheother:
Proof
Bydefinition,
jXCYj
2
D
Xn
iD1
.x
i
Cy
i
/
2
D
Xn
iD1
x
2
i
C2
Xn
iD1
x
i
y
i
C
Xn
iD1
y
2
i
DjXj
2
C2.XY/CjYj
2
jXj
2
C2jXjjYjCjYj
2
(bySchwarz’sinequality)
D.jXjCjYj/
2
:
(5.1.7)
Hence,
jXCYj
2
.jXjCjYj/
2
:
Takingsquarerootsyields(5.1.6).
Fromthethirdlineof(5.1.7),equalityholdsin(5.1.6)ifandonlyifXYDjXjjYj,
whichistrueifandonlyifoneofthevectorsXandYisanonnegativescalarmultipleof
theother(Lemma5.1.5).
Corollary5.1.7
IfX;Y;andZareinR
n
;then
jXZjjXYjCjYZj:
Proof
Write
XZD.XY/C.YZ/;
andapplyTheorem5.1.6withXandYreplacedbyXYandYZ.
VB.NET Create PDF from Excel Library to convert xlsx, xls to PDF
Change Excel hyperlink to PDF hyperlink and bookmark. VB.NET Demo Code for Converting Excel to PDF. Add necessary references: RasterEdge.Imaging.Basic.dll.
add hyperlinks pdf file; add a link to a pdf in preview
C# Create PDF from Word Library to convert docx, doc to PDF in C#.
Change Word hyperlink to PDF hyperlink and bookmark. Add necessary references: The target resolution of the output tiff file, it is invalid for pdf file.
pdf link to attached file; add links in pdf
286 Chapter5
Real-ValuedFunctionsof
n
Variables
Corollary5.1.8
IfXandYareinR
n
;then
jXYjjjXjjYjj:
Proof
Since
XDYC.XY/;
Theorem5.1.6impliesthat
jXjjYjCjXYj;
whichisequivalentto
jXjjYjjXYj:
InterchangingXandYyields
jYjjXjjYXj:
SincejXYjDjYXj,thelasttwoinequalitiesimplythestatedconclusion.
Example5.1.3
TheanglebetweentwononzerovectorsXD .x
1
;x
2
;x
3
/andY D
.y
1
;y
2
;y
3
/inRistheanglebetweenthedirectedlinesegmentsfromtheorigintothe
pointsXandY(Figure5.1.2).
X
0
Y
Y
X
X−Y
θ
Figure5.1.2
ApplyingthelawofcosinestothetriangleinFigure5.1.2yields
jXYj
2
DjXj
2
CjYj
2
2jXjjYjcos:
(5.1.8)
However,
jXYj
2
D.x
1
y
1
/
2
C.x
2
y
2
/
2
C.x
3
y
3
/
2
D.x
2
1
Cx
2
2
Cx
2
3
/C.y
2
1
Cy
2
2
Cy
2
3
/2.x
1
y
1
Cx
2
y
2
Cx
3
y
3
/
DjXj
2
CjYj
2
2XY:
VB.NET Create PDF from Word Library to convert docx, doc to PDF in
Change Word hyperlink to PDF hyperlink and bookmark. VB.NET Demo Code for Converting Word to PDF. Add necessary references: RasterEdge.Imaging.Basic.dll.
clickable links in pdf files; add hyperlink to pdf online
.NET PDF SDK - Description of All PDF Processing Control Feastures
Create signatures in existing PDF signature fields; Create signatures in new fields which hold the signature; Add signature image to PDF file. PDF Hyperlink Edit
pdf reader link; add a link to a pdf
Section5.1
Structureof
R
n
287
Comparingthiswith(5.1.8)yields
XYDjXjjYjcos:
Sincejcosj1,thisverifiesSchwarz’sinequalityinR
3
.
Example5.1.4
Connectingthepoints0,X,Y,andXCYinR
2
orR
3
(Figure5.1.3)
producesaparallelogramwithsidesoflengthjXjandjYjandadiagonaloflengthjXCYj.
0
X
Y
Y
Y
X
X
X+Y
X+Y
Figure5.1.3
Thus,thereisatrianglewithsidesjXj,jYj,andjXCYj.Fromthis,weseegeometrically
that
jXCYjjXjCjYj
inR
2
orR
3
,sincethelengthofonesideofatrianglecannotexceedthesumofthelengths
oftheothertwo.Thisverifies(5.1.6)forR
2
andR
3
andindicateswhy(5.1.6)iscalledthe
triangleinequality.
Thenexttheoremlistspropertiesoflength,distance,andinnerproductthatfollowdi-
rectlyfromDefinitions5.1.3and5.1.4.Weleavetheprooftoyou(Exercise5.1.6).
Theorem5.1.9
IfX;Y;andZaremembersofRandaisascalar,then
(a)
jaXjDjajjXj:
(b)
jXj0;withequalityifandonlyifXD0:
(c)
jXYj0;withequalityifandonlyifXDY:
(d)
XYDYX:
(e)
X.YCZ/DXYCXZ:
(f)
.cX/YDX.cY/Dc.XY/:
288 Chapter5
Real-ValuedFunctionsof
n
Variables
LineSegmentsin
R
R
R
n
TheequationofalinethroughapointX
0
D.x
0
;y
0
0
/inRcanbewrittenparametri-
callyas
xDx
0
Cu
1
t; yDy
0
Cu
2
t; ´D´
0
Cu
3
t; 1<t<1;
whereu
1
,u
2
,andu
3
arenotallzero.Wewritethisinvectorformas
XDX
0
CtU; 1<t<1;
(5.1.9)
withUD.u
1
;u
2
;u
3
/,andwesaythatthelineisthroughX
0
inthedirectionofU.
Therearemanywaystorepresentagivenlineparametrically.Forexample,
XDX
0
CsV; 1<s<1;
(5.1.10)
representsthesamelineas(5.1.9)ifandonlyifVDaUforsomenonzerorealnumbera.
Thenthelineistraversedinthesamedirectionassandtvaryfrom1to1ifa>0,or
inoppositedirectionsifa<0.
TowritetheparametricequationofalinethroughtwopointsX
0
andX
1
inR3,wetake
UDX
1
0in(5.1.9),whichyields
XDX
0
Ct.X
1
X
0
/DtX
1
C.1t/X
0
; 1<t<1:
ThelinesegmentfromX
0
toX
1
consistsofthosepointsforwhich0t1.
Example5.1.5
ThelineLdefinedby
xD1C2t; yD34t; ´D1; 1<t<1;
whichcanberewrittenas
XD.1;3;1/Ct.2;4;0/; 1<t<1;
(5.1.11)
isthroughX
0
D .1;3;1/inthedirectionofUD .2;4;0/. Thesamelinecanbe
representedby
XD.1;3;1/Cs.1;2;0/; 1<s<1;
(5.1.12)
orby
XD.1;3;1/C.4;8;0/; 1<<1:
(5.1.13)
Since
.1;2;0/D
1
2
.2;4;0/;
Listraversedinthesamedirectionastandsvaryfrom1to1in(5.1.11)and(5.1.12).
However,since
.4;8;0/D2.2;4;0/;
Section5.1
Structureof
R
n
289
Listraversedinoppositedirectionsastandvaryfrom1to1in(5.1.11)and(5.1.13).
Settingt D1in(5.1.11),weseethatX
1
D.1;1;1/isalsoonL.Thelinesegment
fromX
0
toX
1
consistsofallpointsoftheform
XDt.1;1;1/C.1t/.1;3;1/; 0t1:
ThesefamiliarnotionscanbegeneralizedtoR
n
,asfollows:
Definition5.1.10
SupposethatX
0
andUareinR
n
andU¤0.Thenthelinethrough
X
0
inthedirectionofUisthesetofallpointsinR
n
oftheform
XDX
0
CtU; 1<t<1:
Asetofpointsoftheform
XDX
0
CtU; t
1
tt
2
;
iscalledalinesegment.Inparticular,thelinesegmentfromX
0
toX
1
isthesetofpointsof
theform
XDX
0
Ct.X
1
X
0
/DtX
1
C.1t/X
0
; 0t1:
NeighborhoodsandOpenSets in
R
R
R
n
HavingdefineddistanceinR
n
,wearenowabletosaywhatwemeanbyaneighborhood
ofapointinR
n
.
Definition5.1.11
If>0,the-neighborhoodofapointX
0
inR
n
istheset
N
.X
0
/jD
˚
X
ˇ
ˇ
jXX
0
j<
:
An-neighborhoodofapointX
0
inRistheinside,butnotthecircumference,ofthe
circleofradiusaboutX
0
.InR3itistheinside,butnotthesurface,ofthesphereofradius
aboutX
0
.
InSection1.3westatedseveralotherdefinitionsintermsof-neighborhoods:neigh-
borhood,interiorpoint,interiorofaset,openset,closedset,limitpoint,boundarypoint,
boundaryofaset,closureofaset,isolatedpoint,exteriorpoint,andexteriorofaset.Since
thesedefinitionsarethesameforR
n
asforR,wewillnotrepeatthem.Weadviseyouto
readthemagaininSection1.3,substitutingR
n
forRandX
0
forx
0
.
Example5.1.6
LetS bethesetofpointsinRinthesquareboundedbythelines
x D ˙1,y D D ˙1, , exceptfortheoriginandthepointsontheverticallinesx D D ˙1
(Figure5.1.4,page290);thus,
SD
˚
.x;y/
ˇ
ˇ
.x;y/¤.0;0/;1<x<1;1y1
:
290 Chapter5
Real-ValuedFunctionsof
n
Variables
EverypointofSnotonthelinesyD˙1isaninteriorpoint,so
S
0
D
˚
.x;y/
ˇ
ˇ
.x;y/¤.0;0/;1<x;y<1
:
Sisadeletedneighborhoodof.0;0/andisneitheropennorclosed.TheclosureofSis
SD
˚
.x;y/
ˇ
ˇ
1x;y1
;
andeverypointof
SisalimitpointofS. TheoriginandtheperimeterofSform@S,the
boundaryofS.TheexteriorofSconsistsofallpoints.x;y/suchthatjxj>1orjyj>1.
TheoriginisanisolatedpointofS
c
.
y
x
(1, 1)
(−1, 1)
(1, −1)
(−1, −1)
x
Figure5.1.4
Example5.1.7
IfX
0
isapointinR
n
andrisapositivenumber,theopenn-ballof
radiusraboutX
0
isthesetB
r
.X
0
/ D
˚
X
ˇ
ˇ
jXX
0
j<r
. (Thus,-neighborhoodsare
openn-balls.)IfX
1
isinS
r
.X
0
/and
jXX
1
j<DrjXX
0
j;
thenXisinS
r
.X
0
/.(ThesituationisdepictedinFigure5.1.5fornD2.)
Thus,S
r
.X
0
/containsan-neighborhoodofeachofitspoints,andisthereforeopen.
Weleaveittoyou(Exercise5.1.13)toshowthattheclosureofB
r
.X
0
/istheclosedn-ball
ofradiusraboutX
0
,definedby
Section5.1
Structureof
R
n
291
S
r
.X
0
/D
˚
X
ˇ
ˇ
jXX
0
jr
:
X
0
X
1
X
r− X
1
−X
0
Figure5.1.5
Openandclosedn-ballsaregeneralizationstoR
n
ofopenandclosedintervals.
Thefollowinglemmawillbeusefullaterinthissection,whenweconsiderconnected
sets.
Lemma5.1.12
IfX
1
andX
2
areinS
r
.X
0
/forsomer>0,thensoiseverypointon
thelinesegmentfromX
1
toX
2
:
Proof
Thelinesegmentisgivenby
XDtX
2
C.1t/X
1
; 0<t<1:
Supposethatr>0.If
jX
1
X
0
j<r; jX
2
X
0
j<r;
and0<t<1,then
jXX
0
jDjtX
2
C.1t/X
1
tX
0
.1t/X
0
j
Djt.X
2
X
0
/C.1t/X
1
X
0
/j
tjX
2
X
0
jC.1t/jX
1
X
0
j
<trC.1t/rDr:
TheproofsinSection1.3ofTheorem1.3.3(theunionofopensetsisopen,theintersec-
tionofclosedsetsisclosed)andTheorem1.3.5anditsCorollary1.3.6(asetisclosedif
andonlyifitcontainsallitslimitpoints)arealsovalidinRn.Youshouldrereadthemnow.
Documents you may be interested
Documents you may be interested