﻿

# pdfsharp c# : Add links in pdf SDK software API .net windows asp.net sharepoint TRENCH_REAL_ANALYSIS41-part261

402 Chapter6
Vector-ValuedFunctionsofSeveralVariables
Everypointintheuv-planecanbewritteninpolarcoordinatesas
uDcos˛; vDsin˛;
whereeitherD0or
D
p
u2Cv>0; ˛<;
andthepointsforwhichD0or˛Dareoftheform.u;0/,withu0(Figure6.3.5).
If.u;v/DF.x;y/forsome.x;y/inS,then(6.3.15)impliesthat>0and <˛<
. Conversely, , anypointintheuv-planewithpolarcoordinates.;˛/satisfyingthese
conditionsistheimageunderFofthepoint
.x;y/D.
1=2
cos˛=2;
1=2
sin˛=2/2S:
Thus,
F
1
S
.u;v/D
2
4
.u
2
Cv
2
/
1=4
cos.arg.u;v/=2/
.uCv2/1=4sin.arg.u;v/=2
3
5
; <arg.u;v/<:
v
u
(u,v)
α
α = −π
u2 + v2
Figure6.3.5
Becauseof(6.3.8),Falsomapstheopenlefthalf-plane
S
1
D
˚
.x;y/
ˇ
ˇ
x<0
ontoF.S/,and
F
1
S
1
.u;v/D
2
4
.u2Cv2/1=4cos.arg.u;v/=2/
.u
2
Cv
2
/
1=4
sin.arg.u;v/=2/
3
5
;   <arg.u;v/<3;
DF
1
S
.u;v/:
Free C# example code is offered for users to edit PDF document hyperlink (url), like inserting and deleting
Add links in pdf - VB.NET PDF url edit library: insert, remove PDF links in vb.net, ASP.NET, MVC, Ajax, WinForms, WPF
Help to Insert a Hyperlink to Specified PDF Document Page
Section6.3
TheInverseFunctionTheorem
403
Example6.3.5
Thetransformation
u
v
DF.x;y/D
e
x
cosy
e
x
siny
(6.3.16)
isnotone-to-one,since
F.x;yC2k/DF.x;y/
(6.3.17)
ifkisanyinteger. Thistransformationisone-to-oneonasetSifandonlyifSdoesnot
containanypairofpoints.x
0
;y
0
/and.x
0
;y
0
C2k/,wherekisanonzerointeger.This
conditionisnecessarybecauseof(6.3.17);weleaveittoyoutoshowthatitissufﬁcient
(Exercise6.3.8).Therefore,forexample,Fisone-to-oneon
S
D
˚
.x;y/
ˇ
ˇ
1<x<1;y<C2
(6.3.18)
whereisarbitrary.Geometrically,S
istheinﬁnitestripboundedbythelinesyDand
yDC2.ThelowerboundaryisinS
,buttheupperisnot(Figure6.3.6).Sinceevery
pointisintheinteriorofsomesuchstrip,Fislocallyinvertibleontheentireplane.
y
x
y = φ
y = φ + 2π
Figure6.3.6
TherangeofF
S
istheentireuv-planeexcepttheorigin,sinceif.u;v/¤.0;0/,then
.u;v/canbewrittenuniquelyas
u
v
D
cos˛
sin˛
;
where
>0; ˛<C2;
so.u;v/istheimageunderFof
.x;y/D.log;˛/2S:
TheoriginisnotinR.F/,since
jF.x;y/j
2
D.e
x
cosy/
2
C.e
x
siny/
2
De
2x
¤0:
C# PDF Convert to HTML SDK: Convert PDF to html files in C#.net
HTML converter toolkit SDK, preserves all the original anchors, links, bookmarks and to Use C#.NET Demo Code to Convert PDF Document to Add necessary references
.NET PDF Document Viewing, Annotation, Conversion & Processing
PDF Write. Insert text, text box into PDF. Edit, delete text from PDF. Insert images into PDF. Edit, remove images from PDF. Add, edit, delete links. Form Process
404 Chapter6
Vector-ValuedFunctionsofSeveralVariables
Finally,
F
1
S
.u;v/D
2
4
log.u
2
Cv
2
/
1=2
arg.u;v/
3
5
; arg.u;v/<C2:
ThedomainofF
1
S
istheentireuv-planeexceptfor.0;0/.
RegularTransformations
ThequestionofinvertibilityofanarbitrarytransformationFWR
n
!R
n
istoogeneralto
whichimpliesthatone-to-onerestrictionsofcontinuouslydifferentiabletransformations
havecontinuouslydifferentiableinverses.
Tomotivateourstudyofthisquestion,letusﬁrstconsiderthelineartransformation
F.X/DAXD
2
6
6
6
4
a
11
a
12
 a
1n
a
21
a
22
 a
2n
:
:
:
:
:
:
:
:
:
:
:
:
a
n1
a
n2
 a
nn
3
7
7
7
5
2
6
6
6
4
x
1
x
2
:
:
:
x
n
3
7
7
7
5
:
FromTheorem6.3.1,FisinvertibleifandonlyifAisnonsingular,inwhichcaseR.F/D
R
n
and
F
1
.U/DA
1
U:
SinceAandA
1
arethedifferentialmatricesofFandF
1
,respectively,wecansaythata
lineartransformationisinvertibleifandonlyifitsdifferentialmatrixF
0
isnonsingular,in
whichcasethedifferentialmatrixofF
1
isgivenby
.F
1
/
0
D.F
0
/
1
:
Becauseofthis,itistemptingtoconjecturethatifFWR
n
!R
n
iscontinuouslydifferen-
tiableandA
0
.X/isnonsingular,or,equivalently,JF.X/¤0,forXinasetS,thenFis
one-to-oneonS.However,thisisfalse.Forexample,if
F.x;y/D
e
x
cosy
e
x
siny
;
then
JF.x;y/D
ˇ
ˇ
ˇ
ˇ
e
x
cosy e
x
siny
e
x
siny
e
x
cosy
ˇ
ˇ
ˇ
ˇ
De
2x
¤0;
(6.3.19)
butFisnotone-to-oneonR
2
(Example6.3.5). Thebestthatcanbesaidingeneralis
thatifFiscontinuouslydifferentiableandJF.X/¤0inanopensetS,thenFislocally
invertibleonS,andthelocalinversesarecontinuouslydifferentiable. Thisispartofthe
inversefunctiontheorem,whichwe willprovepresently. First, , weneedthefollowing
deﬁnition.
VB.NET PDF Convert to HTML SDK: Convert PDF to html files in vb.
Turn PDF images to HTML images in VB.NET. Embed PDF hyperlinks to HTML links in VB.NET. Convert PDF to HTML in VB.NET Demo Code. Add necessary references:
C# PDF Convert to Word SDK: Convert PDF to Word library in C#.net
the original text style (including font, size, color, links and boldness). C#.NET DLLs and Demo Code: Convert PDF to Word Document in C# Add necessary references
Section6.3
TheInverseFunctionTheorem
405
Deﬁnition6.3.2
AtransformationFWR
n
!R
n
isregularonanopensetS ifFis
one-to-oneandcontinuouslydifferentiableonS,andJF.X/¤0ifX2S. Wewillalso
saythatFisregularonanarbitrarysetSifFisregularonanopensetcontainingS.
Example6.3.6
If
F.x;y/D
xy
xCy
(Example6.3.2),then
JF.x;y/D
ˇ
ˇ
ˇ
ˇ
1 1
1
1
ˇ
ˇ
ˇ
ˇ
D2;
soFisone-to-oneonR
2
.Hence,FisregularonR
2
.
If
F.x;y/D
xC y
2xC2y
(Example6.3.3),then
JF.x;y/D
ˇ
ˇ
ˇ
ˇ
1 1
2 2
ˇ
ˇ
ˇ
ˇ
D0;
soFisnotregularonanysubsetofR
2
.
If
F.x;y/D
x
2
y
2
2xy
(Example6.3.4),then
JF.x;y/D
ˇ
ˇ
ˇ
ˇ
2x 2y
2y
2x
ˇ
ˇ
ˇ
ˇ
D2.x
2
Cy
2
/;
soFisregularonanyopensetSonwhichFisone-to-one,providedthat.0;0/62S.Forex-
ample,Fisregularontheopenhalf-plane
˚
.x;y/
ˇ
ˇ
x>0
,sincewesawinExample6.3.4
thatFisone-to-oneonthishalf-plane.
If
F.x;y/D
e
x
cosy
e
x
cosy
(Example6.3.5),thenJF.x;y/ De
2x
(see(6.3.19)),soFisregularonanyopenseton
whichitisone-to-one.TheinteriorofS
in(6.3.18)isanexampleofsuchaset.
Theorem6.3.3
SupposethatF W R
n
! R
n
isregular onanopensetS;andlet
GDF
1
S
:ThenF.S/isopen;GiscontinuouslydifferentiableonF.S/;and
G
0
.U/D.F
0
.X//
1
; where UDF.X/:
Moreover;sinceGisone-to-oneonF.S/;GisregularonF.S/:
How to C#: Basic SDK Concept of XDoc.PDF for .NET
You may add PDF document protection functionality into your C# program. to edit hyperlink of PDF document, including editing PDF url links and quick
C# Create PDF Library SDK to convert PDF from other file formats
PDF with a blank page, bookmarks, links, signatures, etc. PDF document in C#.NET using this PDF document creating toolkit, if you need to add some text
406 Chapter6
Vector-ValuedFunctionsofSeveralVariables
Proof
WeﬁrstshowthatifX
0
2 S,thenaneighborhoodofF.X
0
/isinF.S/. This
impliesthatF.S/isopen.
SinceS isopen,thereisa > 0suchthat
B
.X
0
/  S. LetBbetheboundaryof
B
.X
0
/;thus,
BD
˚
ˇ
ˇ
X
jXX
0
jD:
(6.3.20)
Thefunction
.X/DjF.X/F.X
0
/j
iscontinuousonSandthereforeonB,whichiscompact.Hence,byTheorem5.2.12,there
isapointX
1
inBwhere.X/attainsitsminimumvalue,saym,onB.Moreover,m>0,
sinceX
1
¤X
0
andFisone-to-oneonS.Therefore,
jF.X/F.X
0
/jm>0 if jXX
0
jD:
(6.3.21)
Theset
˚
U
ˇ
ˇ
jUF.X
0
/j<m=2
isaneighborhoodofF.X
0
/.WewillshowthatitisasubsetofF.S/. Toseethis,letUbe
aﬁxedpointinthisset;thus,
jUF.X
0
/j<m=2:
(6.3.22)
Considerthefunction
1
.X/DjUF.X/j
2
;
whichiscontinuousonS.Notethat
1
.X/
m
2
4
if jXX
0
jD;
(6.3.23)
sinceifjXX
0
jD,then
jUF.X/jDj.UF.X
0
//C.F.X
0
/F.X//j
ˇ
ˇ
jF.X
0
/F.X/jjUF.X
0
/j
ˇ
ˇ
m
m
2
D
m
2
;
from(6.3.21)and(6.3.22).
Since
1
iscontinuousonS,
1
attainsaminimumvalueonthecompactset
B
.X
0
/
(Theorem5.2.12);thatis,thereisan
Xin
B
.X
0
/suchthat
1
.X/
1
.
X/D; X2
B
.X
0
/:
SettingXDX
0
,weconcludefromthisand(6.3.22)that
1
.
X/D
1
.X
0
/<
m
2
4
:
Becauseof(6.3.20)and(6.3.23),thisrulesoutthepossibilitythat
X2B,so
X2B
.X
0
/.
VB.NET PDF: Basic SDK Concept of XDoc.PDF
You may add PDF document protection functionality into your VB.NET program. to edit hyperlink of PDF document, including editing PDF url links and quick
C# Image: Tutorial for Document Management Using C#.NET Imaging
more detailed C# tutorials on each part by following the links respectively are dedicated to provide powerful & profession imaging controls, PDF document, image
Section6.3
TheInverseFunctionTheorem
407
NowwewanttoshowthatD0;thatis,UDF.
X/. Tothisend,wenotethat
1
.X/
canbewrittenas
1
.X/D
Xn
jD1
.u
j
f
j
.X//
2
;
so
1
isdifferentiableonB
p
.X
0
/. Therefore,theﬁrstpartialderivativesof
1
areallzero
atthelocalminimumpoint
X(Theorem5.3.11),so
Xn
jD1
@f
j
.
X/
@x
i
.u
j
f
j
.
X//D0; 1in;
or,inmatrixform,
F
0
.
X/.UF.
X//D0:
SinceF
0
.
X/isnonsingularthisimpliesthatUDF.
X/(Theorem6.1.13). Thus,wehave
shownthateveryUthatsatisﬁes(6.3.22)isinF.S/. Therefore,sinceX
0
isanarbitrary
pointofS,F.S/isopen.
Next,weshowthatGiscontinuousonF.S/. SupposethatU
0
2 F.S/andX
0
isthe
uniquepointinSsuchthatF.X
0
/DU
0
.SinceF
0
.X
0
/isinvertible,Lemma6.2.6implies
thatthereisa>0andanopenneighborhoodN ofX
0
suchthatN Sand
jF.X/F.X
0
/jjXX
0
j if X2N:
(6.3.24)
(Exercise6.2.18alsoimpliesthis.)SinceFsatisﬁesthehypothesesofthepresenttheorem
onN,theﬁrstpartofthisproofshowsthatF.N/isanopensetcontainingU
0
DF.X
0
/.
Therefore,thereisaı>0suchthatXDG.U/isinNifU2B
ı
.U
0
/.SettingXDG.U/
andX
0
DG.U
0
/in(6.3.24)yields
jF.G.U//F.G.U
0
//jjG.U/G.U
0
/j if U2B
ı
.U
0
/:
SinceF.G.U//DU,thiscanberewrittenas
jG.U/G.U
0
/j
1
jUU
0
j if U2B
ı
.U
0
/;
(6.3.25)
whichmeansthatGiscontinuousatU
0
.SinceU
0
isanarbitrarypointinF.S/,itfollows
thatGiscontinousonF.S/.
WewillnowshowthatGisdifferentiableatU
0
.Since
G.F.X//DX; X2S;
thechainrule(Theorem6.2.8)impliesthatifGisdifferentiableatU
0
,then
G
0
.U
0
/F
0
.X
0
/DI
408 Chapter6
Vector-ValuedFunctionsofSeveralVariables
(Example6.2.3). Therefore,ifGisdifferentiableatU
0
,thedifferentialmatrixofGmust
be
G
0
.U
0
/DŒF
0
.X
0
/
1
;
sotoshowthatGisdifferentiableatU
0
,wemustshowthatif
H.U/D
G.U/G.U
0
/ŒF
0
.X
0
/
1
.UU
0
/
jUU
0
j
.U¤U
0
/;
(6.3.26)
then
lim
U!U
0
H.U/D0:
(6.3.27)
SinceFisone-to-oneonSandF.G.U//DU,itfollowsthatifU¤U
0
,thenG.U/¤
G.U
0
/.Therefore,wecanmultiplythenumeratoranddenominatorof(6.3.26)byjG.U/
G.U
0
/jtoobtain
H.U/D
jG.U/G.U
0
j
jUU
0
j
G.U/G.U
0
/ŒF
0
.X
0
/
1
.UU
0
/
jG.U/G.U
0
/j
!
D
jG.U/G.U
0
/j
jUU
0
j
F
0
.X
0
/
1
UU
0
F
0
.X
0
/.G.U/G.U
0
//
jG.U/G.U
0
/j
if0<jUU
0
j<ı.Becauseof(6.3.25),thisimpliesthat
jH.U/j
1
kŒF
0
.X
0
/
1
k
ˇ
ˇ
ˇ
ˇ
UU
0
F
0
.X
0
/.G.U/G.U
0
//
jG.U/G.U
0
/j
ˇ
ˇ
ˇ
ˇ
if0<jUU
0
j<ı.Nowlet
H
1
.U/D
UU
0
F
0
.X
0
/.G.U/G.U
0
//
jG.U/G.U
0
/j
Tocompletetheproofof(6.3.27),wemustshowthat
lim
U!U
0
H
1
.U/D0:
(6.3.28)
SinceFisdifferentiableatX
0
,weknowthatif
H
2
.X/D lim
X!X
0
F.X/F.X
0
/F
0
.X
0
/.XX
0
/
jXX
0
j
;
then
lim
X!X
0
H
2
.X/D0:
(6.3.29)
SinceF.G.U//DUandX
0
DG.U
0
/,
H
1
.U/DH
2
.G.U//:
Section6.3
TheInverseFunctionTheorem
409
Nowsupposethat>0.From(6.3.29),thereisaı
1
>0suchthat
jH
2
.X/j< if 0<jXX
0
jDjXG.U
0
/j<ı
1
:
(6.3.30)
SinceGiscontinuousatU
0
,thereisaı
2
2.0;ı/suchthat
jG.U/G.U
0
/j<ı
1
if 0<jUU
0
j<ı
2
:
Thisand(6.3.30)implythat
jH
1
.U/jDjH
2
.G.U//j< if 0<jUU
0
j<ı
2
:
Sincethisimplies(6.3.28),GisdifferentiableatX
0
.
SinceU
0
isanarbitrarymemberofF.N/, wecannowdropthezerosubscriptand
concludethatGiscontinuousanddifferentiableonF.N/,and
G
0
.U/DŒF
0
.X/
1
; U2F.N/:
ToseethatGiscontinuouslydifferentiableonF.N/,weobservethatbyTheorem6.1.14,
eachentryofG
0
.U/(thatis,eachpartialderivative@g
i
.U/=@u
j
,1  i;j   n)canbe
writtenastheratio,withnonzerodenominator,ofdeterminantswithentriesoftheform
@f
r
.G.U//
@x
s
:
(6.3.31)
Since@f
r
=@x
s
iscontinuousonN andGiscontinuousonF.N/,Theorem5.2.10implies
entries,itnowfollowsthattheentriesofG
0
.U/arecontinuousonF.N/.
Branches oftheInverse
IfFisregularonanopensetS,wesaythatF1
S
isabranchof F1. (Thisisaconvenient
terminologybutisnotmeanttoimplythatFactuallyhasaninverse.)Fromthisdeﬁnition,
itispossibletodeﬁneabranchofF
1
onasetT R.F/ifandonlyifTDF.S/,where
FisregularonS. TheremaybeopensubsetsofR.F/thatdonothavethisproperty,and
thereforenobranchofF
1
canbedeﬁnedonthem. ItisalsopossiblethatT DF.S
1
/D
F.S
2
/,whereS
1
andS
2
aredistinctsubsetsofD
F
.Inthiscase,morethanonebranchof
F
1
isdeﬁnedonT. Thus,wesawinExample6.3.4thattwobranchesofF
1
maybe
deﬁnedonasetT. InExample6.3.5inﬁnitelymanybranchesofF
1
aredeﬁnedonthe
sameset.
ItisusefultodeﬁnebranchesoftheargumentTodothis,wethinkoftherelationship
betweenpolarandrectangularcoordinatesintermsofthetransformation
x
y
DF.r;/D
rcos
rsin
;
(6.3.32)
whereforthemomentweregardrandasrectangularcoordinatesofapointinanr-
plane.LetSbeanopensubsetoftherighthalfofthisplane(thatis,S
˚
.r;/
ˇ
ˇ
r>0
)
410 Chapter6
Vector-ValuedFunctionsofSeveralVariables
thatdoesnotcontainanypairofpoints.r;/and.r;C2k/,wherekisanonzerointeger.
ThenFisone-to-oneandcontinuouslydifferentiableonS,with
F
0
.r;/D
cos rsin
sin
rcos
(6.3.33)
and
JF.r;/Dr>0; .r;/2S:
(6.3.34)
Hence, FisregularonS. NowletT D D F.S/, thesetofpointsinthexy-planewith
polarcoordinatesinS. Theorem6.3.3statesthatT T isopenandF
S
hasacontinuously
differentiableinverse(whichwedenotebyG,ratherthanF
1
S
,fortypographicalreasons)
r
DG.x;y/D
2
4
p
x2Cy2
arg
S
.x;y/
3
5
; .x;y/2T;
wherearg
S
.x;y/istheuniquevalueofarg.x;y/suchthat
.r;/D
p
x2Cy2;arg
S
.x;y/
2S:
Wesaythatarg
S
.x;y/ isabranchoftheargumentdeﬁnedonT. Theorem6.3.3also
impliesthat
G
0
.x;y/D
F
0
.r;/
1
D
"
cos
sin
sin
r
cos
r
#
(see(6.3.33))
D
2
6
4
x
p
x2Cy2
y
p
x2Cy2
y
x2Cy2
x
x2Cy2
3
7
5
(see(6.3.32)):
Therefore,
@arg
S
.x;y/
@x
D
y
x2Cy2
;
@arg
S
.x;y/
@y
D
x
x2Cy2
:
(6.3.35)
Abranchofarg.x;y/canbedeﬁnedonanopensetT ofthexy-planeifandonlyif
thepolarcoordinatesofthepointsinT formanopensubsetofther-planethatdoesnot
intersectthe-axisorcontainanytwopointsoftheform.r;/and.r;C2k/,where
kisanonzerointeger. Nosubsetcontainingtheorigin.x;y/D.0;0/hasthisproperty,
nordoesanydeletedneighborhoodoftheorigin(Exercise6.3.14),sothereareopensets
onwhichnobranchoftheargumentcanbedeﬁned.However,ifonebranchcanbedeﬁned
onT,thensocaninﬁnitelymanyothers.(Why?)Allbranchesofarg.x;y/havethesame
partialderivatives,givenin(6.3.35).