﻿

# pdfsharp c# : Adding a link to a pdf in preview application Library tool html .net asp.net online TRENCH_REAL_ANALYSIS5-part270

Section2.1
FunctionsandLimits
43
Throughoutthisbook,“lim
x!x
0
f.x/exists”willmeanthat
lim
x!x
0
f.x/DL; whereLisﬁnite.
ToleaveopenthepossibilitythatLD˙1,wewillsaythat
lim
x!x
0
f.x/ existsintheextendedreals.
Thisconventionalsoappliestoone-sidedlimitsandlimitsasxapproaches˙1.
WementionedearlierthatTheorems2.1.3and2.1.4remainvalidif“lim
x!x
0
”isre-
placedby“lim
x!x
0
”or“lim
x!x
0
C
.” They y arealsovalidwithx
0
replaced by˙1.
Moreover,thecounterpartsof(2.1.10),(2.1.11),and(2.1.12)inalltheseversionsofThe-
orem2.1.4remainvalidifeitherorbothofL
1
andL
2
areinﬁnite,providedthattheir
rightsidesarenotindeterminate(Exercises2.1.28and2.1.29). Equation(2.1.14)andits
counterpartsremainvalidifL
1
=L
2
isnotindeterminateandL
2
¤0(Exercise2.1.30).
Example2.1.13
ResultslikeTheorem2.1.4yield
lim
x!1
sinhxD lim
x!1
eex
2
D
1
2
lim
x!1
e
x
 lim
x!1
e
x
D
1
2
.10/D1;
lim
x!1
sinhxD lim
x!1
e
x
e
x
2
D
1
2
lim
x!1
e
x
 lim
x!1
e
x
D
1
2
.01/D1;
and
lim
x!1
e
x
x
D
lim
x!1
e
x
lim
x!1
x
D
0
1
D0:
Example2.1.14
If
f.x/De
2x
e
x
;
wecannotobtainlim
x!1
f.x/bywriting
lim
x!1
f.x/D lim
x!1
e
2x
 lim
x!1
e
x
;
becausethisproducestheindeterminateform11.However,bywriting
f.x/De
2x
.1e
x
/;
weﬁndthat
lim
x!1
f.x/D
lim
x!1
e
2x

lim
x!1
1 lim
x!1
e
x
D1.10/D1:
Adding a link to a pdf in preview - insert, remove PDF links in C#.net, ASP.NET, MVC, Ajax, WinForms, WPF
Free C# example code is offered for users to edit PDF document hyperlink (url), like inserting and deleting
clickable links in pdf files; add hyperlink to pdf online
Adding a link to a pdf in preview - VB.NET PDF url edit library: insert, remove PDF links in vb.net, ASP.NET, MVC, Ajax, WinForms, WPF
Help to Insert a Hyperlink to Specified PDF Document Page
add a link to a pdf in acrobat; add links to pdf file
44 Chapter2
DifferentialCalculusofFunctionsofOneVariable
Example2.1.15
Let
g.x/D
2x
2
xC1
3x2C2x1
:
Tryingtoﬁndlim
x!1
g.x/byapplyingaversionofTheorem2.1.4tothisfractionasitis
writtenleadstoanindeterminateform(tryit!).However,byrewritingitas
g.x/D
21=xC1=x
2
3C2=x1=x2
; x¤0;
weﬁndthat
lim
x!1
g.x/D
lim
x!1
2 lim
x!1
1=xC lim
x!1
1=x
2
lim
x!1
3C lim
x!1
2=x lim
x!1
1=x
2
D
20C0
3C00
D
2
3
:
MonotonicFunction
AfunctionfisnondecreasingonanintervalIif
f.x
1
/f.x
2
/ wheneverx
1
andx
2
areinIandx
1
<x
2
;
(2.1.19)
ornonincreasingonIif
f.x
1
/f.x
2
/ wheneverx
1
andx
2
areinIandx
1
<x
2
:
(2.1.20)
Ineithercase,f isonI.Ifcanbereplacedby<in(2.1.19),f isincreasingonI.If
canbereplacedby>in(2.1.20),f isdecreasingonI.Ineitherofthesetwocases,f f is
strictlymonotoniconI.
Example2.1.16
Thefunction
f.x/D
(
x; 0x<1;
2; 1x2;
isnondecreasingonI DŒ0;2(Figure2.1.4),andf isnonincreasingonI I DŒ0;2.
2
2
1
1
y
x
C# PDF insert image Library: insert images into PDF in C#.net, ASP
viewer component supports inserting image to PDF in preview without adobe this technical problem, we provide this C#.NET PDF image adding control, XDoc
add hyperlinks to pdf; add hyperlink to pdf in preview
C# PDF Page Insert Library: insert pages into PDF file in C#.net
applications. Support adding and inserting one or multiple pages to existing PDF document. Forms. Ability to add PDF page number in preview. Offer
add link to pdf; add hyperlink to pdf in
Section2.1
FunctionsandLimits
45
Figure2.1.4
Thefunctiong.x/Dx2isincreasingonŒ0;1/(Figure2.1.5),
y
x
y = x2
Figure2.1.5
andh.x/Dx3isdecreasingon.1;1/(Figure2.1.6).
y = − x3
y
x
Figure2.1.6
C# PDF insert text Library: insert text into PDF content in C#.net
Supports adding text to PDF in preview without adobe reader installed in ASP.NET. Powerful .NET PDF edit control allows modify existing scanned PDF text.
add hyperlink to pdf; convert excel to pdf with hyperlinks
VB.NET PDF insert text library: insert text into PDF content in vb
Multifunctional Visual Studio .NET PDF SDK library supports adding text content to adobe PDF document in VB.NET Add text to PDF in preview without adobe
pdf email link; adding links to pdf document
46 Chapter2
DifferentialCalculusofFunctionsofOneVariable
Intheproofofthefollowingtheorem,weassumethatyouhaveformulatedthedeﬁnitions
calledforinExercise2.1.19.
Theorem2.1.9
Supposethatf ismonotonicon.a;b/anddeﬁne
˛D
inf
a<x<b
f.x/ and ˇD sup
a<x<b
f.x/:
(a)
Iff isnondecreasing;thenf.aC/D˛andf.b/Dˇ:
(b)
Iff isnonincreasing;thenf.aC/Dˇandf.b/D˛:
.HereaCD1ifaD1andbD1ifbD1:/
(c)
Ifa<x
0
<b,thenf.x
0
C/andf.x
0
/existandareﬁniteImoreover;
f.x
0
/f.x
0
/f.x
0
C/
iff isnondecreasing;and
f.x
0
/f.x
0
/f.x
0
C/
iff isnonincreasing:
Proof (a)
Weﬁrstshowthatf.aC/D˛.If
M > > ˛, , thereisanx
0
in.a;b/suchthatf.x
0
/ < M. Sincef isnondecreasing,
f.x/<Mifa<x <x
0
. Therefore,if˛D1,thenf.aC/D1. If˛>1,let
MD˛C,where>0.Then˛f.x/<˛C,so
jf.x/˛j< if a<x<x
0
:
(2.1.21)
IfaD1,thisimpliesthatf.1/D˛. Ifa>1,letıDx
0
a. Then(2.1.21)is
equivalentto
jf.x/˛j< if a<x<aCı;
whichimpliesthatf.aC/D˛.
Wenowshowthatf.b/Dˇ.IfM<ˇ,thereisanx
0
in.a;b/suchthatf.x
0
/>M.
Sincef is s nondecreasing, f.x/ > M ifx
0
< x < < b. Therefore, , ifˇ D 1, , then
f.b/D1.Ifˇ<1,letMDˇ,where>0.Thenˇ<f.x/ˇ,so
jf.x/ˇj< if x
0
<x<b:
(2.1.22)
Ifb D D 1,thisimpliesthatf.1/ D ˇ. Ifb b < 1,letı D bx
0
. Then(2.1.22)is
equivalentto
jf.x/ˇj< if bı<x<b;
whichimpliesthatf.b/Dˇ.
(b)
Theproofissimilartotheproofof
(a)
(Exercise2.1.34).
(c)
Supposethatf isnondecreasing. . Applying
(a)
tof on.a;x
0
/and.x
0
;b/sepa-
ratelyshowsthat
f.x
0
/D
sup
a<x<x
0
f.x/ and f.x
0
C/D
inf
x
0
<x<b
f.x/:
C# Create PDF Library SDK to convert PDF from other file formats
Load PDF from stream programmatically. Preview PDF documents without other plug-ins. Besides, using this PDF document metadata adding control, you can
add url link to pdf; add links to pdf acrobat
C# PowerPoint - How to Process PowerPoint
C# methods to add, insert or delete any specific PowerPoint slide, adding & burning & methods and sample codes of respective function, you may link the quick
convert excel to pdf with hyperlinks; add url to pdf
Section2.1
FunctionsandLimits
47
However,ifx
1
<x
0
<x
2
,then
f.x
1
/f.x
0
/f.x
2
/I
hence,
f.x
0
/f.x
0
/f.x
0
C/:
Weleavethecasewheref isnonincreasingtoyou(Exercise2.1.34).
LimitsInferiorandSuperior
Wenowintroducesomeconceptsrelatedtolimits. Weleavethestudyoftheseconcepts
mainlytotheexercises.
Wesaythatf isboundedonasetSifthereisaconstantM<1suchthatjf.x/jM
forallxinS.
Deﬁnition2.1.10
SupposethatfisboundedonŒa;x
0
/,wherex
0
maybeﬁniteor1.
Forax<x
0
,deﬁne
S
f
.xIx
0
/D
sup
xt<x
0
f.t/
and
I
f
.xIx
0
/D
inf
xt<x
0
f.t/:
Thentheleftlimitsuperioroff atx
0
isdeﬁnedtobe
lim
x!x
0
f.x/D
lim
x!x
0
S
f
.xIx
0
/;
andtheleftlimitinferioroff atx
0
isdeﬁnedtobe
lim
x!x
0
f.x/D
lim
x!x
0
I
f
.xIx
0
/:
(Ifx
0
D1,wedeﬁnex
0
D1.)
Theorem2.1.11
Iff isboundedonŒa;x
0
/;thenˇ D
lim
x!x
0
f.x/existsandis
theuniquerealnumberwiththefollowingpropertiesW
(a)
If>0,thereisana
1
inŒa;x
0
/suchthat
f.x/<ˇC if a
1
x<x
0
:
(2.1.23)
(b)
If>0anda
1
isinŒa;x
0
/;then
f.
x/>ˇ forsome
x2Œa
1
;x
0
/:
Proof
Sincef is s boundedonŒa;x
0
/, S
f
.xIx
0
/is nonincreasingandboundedon
Œa;x
0
/. ByapplyingTheorem2.1.9
(b)
toS
f
.xIx
0
/,weconcludethatˇexists(ﬁnite).
Therefore,if>0,thereisan
ainŒa;x
0
/suchthat
ˇ=2<S
f
.xIx
0
/<ˇC=2 if
ax<x
0
:
(2.1.24)
VB.NET PDF insert image library: insert images into PDF in vb.net
in preview without adobe PDF control installed. Access to freeware download and online VB.NET class source code. This smart and mature PDF image adding component
add links in pdf; adding hyperlinks to a pdf
VB.NET PDF copy, paste image library: copy, paste, cut PDF images
paste and cut PDF image while preview without adobe Free Visual Studio .NET PDF library, easy to Besides image extracting, adding, and removing, RasterEdge XDoc
pdf link to attached file; add hyperlink pdf
48 Chapter2
DifferentialCalculusofFunctionsofOneVariable
SinceS
f
.xIx
0
/isanupperboundof
˚
f.t/
ˇ
ˇ
xt<x
0
,f.x/S
f
.xIx
0
/.Therefore,
thesecondinequalityin(2.1.24)implies(2.1.23)witha
1
D
a.Thisproves
(a)
.Toprove
(b)
, leta
1
begivenanddeﬁnex
1
D max.a
1
;
a/. Thentheﬁrstinequalityin(2.1.24)
impliesthat
S
f
.x
1
Ix
0
/>ˇ=2:
(2.1.25)
SinceS
f
.x
1
Ix
0
/isthesupremumof
˚
f.t/
ˇ
ˇ
x
1
<t<x
0
,thereisan
xinŒx
1
;x
0
/such
that
f.
x/>S
f
.x
1
Ix
0
/=2:
Thisand(2.1.25)implythatf.
x/>ˇ.Since
xisinŒa
1
;x
0
/,thisproves
(b)
.
Nowweshowthattherecannotbemorethanonerealnumberwithproperties
(a)
and
(b)
. Supposethatˇ
1
2
andˇ
2
hasproperty
(b)
;thus,if>0anda
1
isinŒa;x
0
/,
thereisan
xinŒa
1
;x
0
/suchthatf.
x/>ˇ
2
.LettingDˇ
2
ˇ
1
,weseethatthere
isan
xinŒa
1
;b/suchthat
f.
x/>ˇ
2
.ˇ
2
ˇ
1
/Dˇ
1
;
soˇ
1
cannothaveproperty
(a)
. Therefore,therecannotbemorethanonerealnumber
thatsatisﬁesboth
(a)
and
(b)
.
Theproofofthefollowingtheoremissimilartothis(Exercise2.1.35).
Theorem2.1.12
Iff isboundedonŒa;x
0
/;then˛Dlim
x!x
0
f.x/existsandis
theuniquerealnumberwiththefollowingproperties:
(a)
If>0;thereisana
1
inŒa;x
0
/suchthat
f.x/>˛ if a
1
x<x
0
:
(b)
If>0anda
1
isinŒa;x
0
/;then
f.
x/<˛C forsome
x2Œa
1
;x
0
/:
2.1Exercises
1.
Eachofthefollowingconditionsfailstodeﬁneafunctiononanydomain. State
why.
(a)
sinf.x/Dx
(b)
e
f.x/
Djxj
(c)
1Cx
2
CŒf.x/
2
D0
(d)
f.x/Œf.x/1Dx
2
2.
If
f.x/D
r
.x3/.xC2/
x1
and
g.x/D
x
2
16
x7
p
x29;
ﬁndD
f
,D
f˙g
,D
fg
,andD
f=g
.
C# Word - Process Word Document in C#
Capable of adding and burning image on specific Word document page in C# class. You may click the link to go to each Word document processing tutorial page to
adding hyperlinks to pdf files; add links pdf document
C# Excel - Excel Page Processing Overview
Support adding image of various formats (such as BMP, PNG & TIFF) to an Excel Click the link to specific C#.NET guide page and you will find detailed API(s
pdf hyperlink; adding an email link to a pdf
Section2.1
FunctionsandLimits
49
3.
FindD
f
.
(a)
f.x/Dtanx
(b)
f.x/D
1
p
1jsinxj
(c)
f.x/D
1
x.x1/
(d)
f.x/D
sinx
x
(e)
e
Œf.x/
2
Dx; f.x/0
4.
Findlim
x!x
0
f.x/,andjustifyyouranswerswithan–ıproof.
(a)
x2C2xC1; x
0
D1
(b)
x
3
8
x2
; x
0
D2
(c)
1
x21
; x
0
D0
(d)
p
x; x
0
D4
(e)
x
3
1
.x1/.x2/
Cx; x
0
D1
5.
ProvethatDeﬁnition2.1.2isunchangedifEqn.(2.1.4)isreplacedby
jf.x/Lj<K;
whereKisanypositiveconstant.(Thatis,lim
x!x
0
f.x/DLaccordingtoDeﬁni-
tion2.1.2ifandonlyiflim
x!x
0
f.x/DLaccordingtothemodiﬁeddeﬁnition.)
6.
UseTheorem2.1.4andtheknownlimitslim
x!x
0
xDx
0
,lim
x!x
0
c Dctoﬁnd
theindicatedlimits.
(a)
lim
x!2
x
2
C2xC3
2x3C1
(b)
lim
x!2
1
xC1
1
x1
(c)
lim
x!1
x1
x3Cx22x
(d)
lim
x!1
x
8
1
x41
7.
Findlim
x!x
0
f.x/andlim
x!x
0
C
f.x/,iftheyexist. Use–ıproofs,whereap-
plicable,tojustifyyouranswers.
(a)
xCjxj
x
; x
0
D0
(b)
xcos
1
x
Csin
1
x
Csin
1
jxj
; x
0
D0
(c)
jx1j
x2Cx2
; x
0
D1
(d)
x
2
Cx2
p
xC2
; x
0
D2
8.
Prove:Ifh.x/0fora<x<x
0
andlim
x!x
0
h.x/exists,thenlim
x!x
0
h.x/
 0.Concludefromthisthatiff
2
.x/f
1
.x/fora<x<x
0
,then
lim
x!x
0
f
2
.x/ lim
x!x
0
f
1
.x/
ifbothlimitsexist.
50 Chapter2
DifferentialCalculusofFunctionsofOneVariable
9. (a)
Prove:Iflim
x!x
0
f.x/exists,thereisaconstantManda>0suchthat
jf.x/j  M if0 < jxx
0
j < . (Wesaythenthatf isboundedon
˚
x
ˇ
ˇ
0<jxx
0
j<
.)
(b)
Statesimilarresultswith“lim
x!x
0
”replacedby“lim
x!x
0
.”
(c)
Statesimilarresultswith“lim
x!x
0
”replacedby“lim
x!x
0
C
.”
10.
Supposethatlim
x!x
0
f.x/DLandnisapositiveinteger.Provethatlim
x!x
0
Œf.x/
n
D
L
n
(a)
byusingTheorem2.1.4andinduction;
(b)
directlyfromDeﬁnition2.1.2.
H
INT
:YouwillﬁndExercise2.1.9usefulfor.b/:
11.
Prove:Iflim
x!x
0
f.x/DL>0,thenlim
x!x
0
p
f.x/D
p
L.
12.
ProveTheorem2.1.6.
13. (a)
UsingthehintstatedafterTheorem2.1.6,provethatTheorem2.1.3remains
validwith“lim
x!x
0
”replacedby“lim
x!x
0
.”
(b)
Repeat
(a)
forTheorem2.1.4.
14.
Deﬁnethestatement“lim
x!1
f.x/DL.”
15.
Findlim
x!1
f.x/ifitexists,andjustifyyouranswerdirectlyfromDeﬁnition2.1.7.
(a)
1
x2C1
(b)
sinx
jxj˛
.˛>0/
(c)
sinx
jxj˛
.˛0/
(d)
e
x
sinx
(e)
tanx
(f)
e
x
2
e
2x
16.
Theorems 2.1.3and2.1.4remain n validwith“lim
x!x
0
”replaced throughoutby
“lim
x!1
”(“lim
x!1
”).Howwouldtheirproofshavetobechanged?
17.
UsingthedeﬁnitionyougaveinExercise2.1.14,showthat
(a)
lim
x!1
1
1
x2
D1
(b)
lim
x!1
2jxj
1Cx
D2
(c)
lim
x!1
sinxdoesnotexist
18.
Findlim
x!1
f.x/,ifitexists,foreachfunctioninExercise2.1.15.Justifyyour
answersdirectlyfromthedeﬁnitionyougaveinExercise2.1.14.
19.
Deﬁne
(a)
lim
x!x
0
f.x/D1
(b)
lim
x!x
0
C
f.x/D1
(c)
lim
x!x
0
C
f.x/D1
20.
Find
(a)
lim
x!0C
1
x3
(b)
lim
x!0
1
x3
(c)
lim
x!0C
1
x6
(d)
lim
x!0
1
x6
(e)
lim
x!x
0
C
1
.xx
0
/2k
(f)
lim
x!x
0
1
.xx
0
/2kC1
(kDpositiveinteger)