pdfsharp c# : Add hyperlink pdf file software application dll windows html winforms web forms TRENCH_REAL_ANALYSIS50-part271

492 Chapter7
IntegralsofFunctionsofSeveralVariables
Tocompletetheproof,wemustverify(7.3.15)foreveryrectangle
RDŒa
1
;b
1
Œa
2
;b
2
Œa
n
;b
n
DI
1
I
2
I
n
:
SupposethatAin(7.3.12)isanelementarymatrix;thatis,let
XDL.Y/DEY:
C
ASE
1.IfEisobtainedbyinterchangingtheithandjthrowsofI,then
x
r
D
8
<
:
y
r
ifr¤iandr¤jI
y
j
ifrDiI
y
i
ifrDj:
ThenL.R/istheCartesianproductofI
1
,I
2
,...,I
n
withI
i
andI
j
interchanged,so
V.L.R//DV.R/Djdet.E/jV.R/
sincedet.E/D1inthiscase(Exercise7.3.7
(a)
).
C
ASE
2.IfEisobtainedbymultiplyingtherthrowofIbya,then
x
r
D
y
r
ifr¤i;
ay
i
ifrDi:
Then
L.R/DI
1
I
i1
I
0
i
I
iC1
I
n
;
whereI
0
i
isanintervalwithlengthequaltojajtimesthelengthofI
i
,so
V.L.R//DjajV.R/Djdet.E/jV.R/
sincedet.E/Dainthiscase(Exercise7.3.7
(a)
).
C
ASE
3.IfEisobtainedbyaddingatimesthejthrowofItoitsithrow(j ¤i),then
x
r
D
y
r
ifr¤iI
y
i
Cay
j
ifrDi:
Then
L.R/D
˚
.x
1
;x
2
;:::;x
n
/
ˇ
ˇ
a
i
Cax
j
x
i
b
i
Cax
j
anda
r
x
r
b
r
ifr¤i
;
whichisaparallelogramifnD2andaparallelepipedifnD3(Figure7.3.1).Now
V.L.R//D
Z
L.R/
dX;
whichwecanevaluateasaniteratedintegralinwhichthefirstintegrationiswithrespect
tox
i
.Forexample,ifi D1,then
V.L.R//D
Z
b
n
a
n
dx
n
Z
b
n1
a
n1
dx
n1

Z
b
2
a
2
dx
2
Z
b
1
Cax
j
a
1
Cax
j
dx
1
:
(7.3.19)
Add hyperlink pdf file - insert, remove PDF links in C#.net, ASP.NET, MVC, Ajax, WinForms, WPF
Free C# example code is offered for users to edit PDF document hyperlink (url), like inserting and deleting
pdf edit hyperlink; add hyperlink to pdf online
Add hyperlink pdf file - VB.NET PDF url edit library: insert, remove PDF links in vb.net, ASP.NET, MVC, Ajax, WinForms, WPF
Help to Insert a Hyperlink to Specified PDF Document Page
add hyperlink to pdf; convert doc to pdf with hyperlinks
Section7.3
ChangeofVariablesinMultipleIntegrals
493
Since
Z
b
1
Cax
j
a
1
Cax
j
dy
1
D
Z
b
1
a
1
dy
1
;
(7.3.19)canberewrittenas
V.L.R//D
Z
b
n
a
n
dx
n
Z
b
n1
a
n1
dx
n1

Z
b
2
a
2
dx
2
Z
b
1
a
1
dx
1
D.b
n
a
n
/.b
n1
a
n1
/.b
1
a
1
/DV.R/:
Hence,V.L.R//Djdet.E/jV.R/,sincedet.E/D1inthiscase(Exercise7.3.7
(a)
).
a
1
b
1
y
1
y
1
y
2
y
3
b
2
a
2
y
2
i = 1, j = 2, a > 0
i = 2, j = 3, a > 0
Figure7.3.1
Fromwhatwehaveshownsofar,(7.3.14)holdsifAisanelementarymatrixandSis
anycompactJordanmeasurableset.IfAisanarbitrarynonsingularmatrix,
How to C#: Basic SDK Concept of XDoc.PDF for .NET
You may add PDF document protection functionality into your C# program. can edit PDF password and digital signature, and set PDF file permission Hyperlink Edit.
adding links to pdf; add links to pdf
VB.NET PDF: Basic SDK Concept of XDoc.PDF
You may add PDF document protection functionality into your VB.NET program. edit PDF password and digital signature, and set PDF file permission Hyperlink Edit.
add hyperlink in pdf; add links to pdf in preview
494 Chapter7
IntegralsofFunctionsofSeveralVariables
thenwecanwriteAasaproductofelementarymatrices(7.3.10)andapplyourknown
resultsuccessivelytoL
1
,L
2
,...,L
k
(see(7.3.13)).Thisyields
V.L.S//Djdet.E
k
/jjdet.E
k1
/jjdetE
1
jV.S/Djdet.A/jV.S/;
byTheorem6.1.9andinduction.
FormulationoftheRuleforChange ofVariables
Wenowformulatetheruleforchangeofvariablesinamultipleintegral.Sincewearefor
thepresentinterestedonlyin“discovering”therule,wewillmakeanyassumptionsthat
easethistask,deferringquestionsofrigoruntiltheproof.
Throughouttherestofthissectionitwillbeconvenienttothinkoftherangeanddomain
ofatransformationGWR
n
!R
n
assubsetsofdistinctcopiesofR
n
.Wewilldenotethe
copycontainingD
G
asE
n
,andwriteGWE
n
!R
n
andXDG.Y/,reversingtheusual
rolesofXandY.
IfGisregularonasubsetSofE
n
,theneachXinG.S/canbeidentifiedbyspecifying
theuniquepointYinSsuchthatXDG.Y/.
Supposethatwewishtoevaluate
R
T
f.X/dX,whereTistheimageofacompactJordan
measurablesetSundertheregulartransformationXDG.Y/.Forsimplicity,wetakeSto
bearectangleandassumethatf iscontinuousonT DG.S/.
NowsupposethatP D D fR
1
;R
2
;:::;R
k
gisapartitionofS andT
j
D G.R
j
/(Fig-
ure7.3.2).
T
j
T
R
j
S
y
x
u
v
X = G(U)
Figure7.3.2
Then
Z
T
f.X/dXD
Xk
jD1
Z
T
j
f.X/dX
(7.3.20)
(Corollary7.1.31andinduction).Sincefiscontinuous,thereisapointX
j
inT
j
suchthat
Z
T
j
f.X/dXDf.X
j
/
Z
T
j
dXDf.X
j
/V.T
j
/
C# PDF Library SDK to view, edit, convert, process PDF file for C#
offers robust APIs for editing PDF document hyperlink (url) and SDK for .NET allows you to read, add, edit, update, and delete PDF file metadata, like
check links in pdf; add a link to a pdf in acrobat
VB.NET PDF Library SDK to view, edit, convert, process PDF file
RasterEdge PDF SDK for .NET package offers robust APIs for editing PDF document hyperlink (url), which provide quick access to the website or other file.
add a link to a pdf file; add links to pdf online
Section7.3
ChangeofVariablesinMultipleIntegrals
495
(Theorem7.1.28),so(7.3.20)canberewrittenas
Z
T
f.X/dXD
Xk
jD1
f.X
j
/V.T
j
/:
(7.3.21)
NowweapproximateV.T
j
/.If
X
j
DG.Y
j
/;
(7.3.22)
thenY
j
2R
j
and,sinceGisdifferentiableatY
j
,
G.Y/G.Y
j
/CG
0
.Y
j
/.YY
j
/:
(7.3.23)
HereGandYY
j
arewrittenascolumnmatrices,G
0
isadifferentialmatrix,and“”
means“approximatelyequal”inasensethatwecouldmakepreciseifwewished(Theo-
rem6.2.2).
ItisreasonabletoexpectthattheJordancontentofG.R
j
/isapproximatelyequaltothe
JordancontentofA.R
j
/,whereAistheaffinetransformation
A.Y/DG.Y
j
/CG
0
.Y
j
/.YY
j
/
ontherightsideof(7.3.23);thatis,
V.G.R
j
//V.A.R
j
//:
(7.3.24)
WecanthinkoftheaffinetransformationAasacompositionADA
3
ıA
2
ıA
1
,where
A
1
.Y/DYY
j
;
A
2
.Y/DG
0
.Y
j
/Y;
and
A
3
.Y/DG.Y
j
/CY:
LetR
0
j
DA
1
.R
j
/.SinceA
1
merelyshiftsR
j
toadifferentlocation,R
0
j
isalsoarectangle,
and
V.R
0
j
/DV.R
j
/:
(7.3.25)
NowletR
00
j
DA
2
.R
0
j
/.(Ingeneral,R
00
j
isnotarectangle.)SinceA
2
isthelineartransfor-
mationwithnonsingularmatrixG
0
.Y
j
/,Theorem7.3.7impliesthat
V.R
00
j
//DjdetG
0
.Y
j
/jV.R
0
j
/DjJG.Y
j
/jV.R
j
/;
(7.3.26)
whereJGistheJacobianofG.NowletR
000
j
DA
3
.R
00
j
/.SinceA
3
merelyshiftsallpoints
inthesameway,
V.R
000
j
/DV.R
00
j
/:
(7.3.27)
Now(7.3.24)–(7.3.27)suggestthat
V.T
j
/jJG.Y
j
/jV.R
j
/:
VB.NET Create PDF from Excel Library to convert xlsx, xls to PDF
Change Excel hyperlink to PDF hyperlink and bookmark. VB.NET Demo Code for Converting Excel to PDF. Add necessary references: RasterEdge.Imaging.Basic.dll.
clickable links in pdf; active links in pdf
C# Create PDF from Word Library to convert docx, doc to PDF in C#.
Change Word hyperlink to PDF hyperlink and bookmark. Add necessary references: The target resolution of the output tiff file, it is invalid for pdf file.
adding links to pdf in preview; pdf link open in new window
496 Chapter7
IntegralsofFunctionsofSeveralVariables
(RecallthatT
j
DG.R
j
/.)Substitutingthisand(7.3.22)into(7.3.21)yields
Z
T
f.X/dX
Xk
jD1
f.G.Y
j
//jJG.Y
j
/jV.R
j
/:
ButthesumontherightisaRiemannsumfortheintegral
Z
S
f.G.Y//jJG.Y/jdY;
whichsuggeststhat
Z
T
f.X/dXD
Z
S
f.G.Y//jJG.Y/jdY:
Wewillprove thisbyan argumentthatwas publishedintheAmericanMathematical
Monthly[Vol.61(1954),pp.81-85]byJ.Schwartz.
TheMainTheorem
Wenowprovethefollowingformoftheruleforchangeofvariableinamultipleintegral.
Theorem7.3.8
SupposethatGWE!RisregularonacompactJordanmeasur-
ablesetSandf iscontinuousonG.S/:Then
Z
G.S/
f.X/dXD
Z
S
f.G.Y//jJG.Y/jdY:
(7.3.28)
Sincetheproofiscomplicated,webreakitdowntoaseriesoflemmas.Wefirstobserve
thatbothintegralsin(7.3.28)exist,byCorollary7.3.2,sincetheirintegrandsarecontinu-
ous.(NotethatSiscompactandJordanmeasurablebyassumption,andG.S/iscompact
andJordanmeasurablebyTheorem7.3.5.)Also,theresultistrivialifV.S/D0,sincethen
V.G.S//D0byLemma7.3.4,andbothintegralsin(7.3.28)vanish. Hence,weassume
thatV.S/>0.Weneedthefollowingdefinition.
Definition7.3.9
IfADŒa
ij
isannnmatrix;then
max
8
<
:
Xn
jD1
ja
ij
j
ˇ
ˇ
1in
9
=
;
istheinfinitynormofA;denotedbykAk
1
.
Lemma7.3.10
SupposethatGWE
n
!R
n
isregularonacubeCinE
n
;andletAbe
anonsingularnnmatrix:Then
V.G.C//jdet.A/j
max
˚
kA
1
G
0
.Y/k
1
ˇ
ˇ
Y2C

n
V.C/:
(7.3.29)
VB.NET Create PDF from Word Library to convert docx, doc to PDF in
Change Word hyperlink to PDF hyperlink and bookmark. VB.NET Demo Code for Converting Word to PDF. Add necessary references: RasterEdge.Imaging.Basic.dll.
add hyperlink to pdf acrobat; add page number to pdf hyperlink
.NET PDF SDK - Description of All PDF Processing Control Feastures
Create signatures in existing PDF signature fields; Create signatures in new fields which hold the signature; Add signature image to PDF file. PDF Hyperlink Edit
adding a link to a pdf; add link to pdf file
Section7.3
ChangeofVariablesinMultipleIntegrals
497
Proof
LetsbetheedgelengthofC.LetY
0
D.c
1
;c
2
;:::;c
n
/bethecenterofC,and
supposethatHD.y
1
;y
2
;:::;y
n
/2C.IfHD.h
1
;h
2
;:::;h
n
/iscontinuouslydifferen-
tiableonC,thenapplyingthemeanvaluetheorem(Theorem5.4.5)tothecomponentsof
Hyields
h
i
.Y/h
i
.Y
0
/D
n
X
jD1
@h
i
.Y
i
/
@y
j
.y
j
c
j
/; 1in;
whereY
i
2C.Hence,recallingthat
H
0
.Y/D
@h
i
@y
j
n
i;jD1
;
applyingDefinition7.3.9,andnotingthatjy
j
c
j
js=2,1j n,weinferthat
jh
i
.Y/h
i
.Y
0
/j
s
2
max
˚
kH
0
.Y/k
1
ˇ
ˇ
Y2C
; 1in:
ThismeansthatH.C/iscontainedinacubewithcenterX
0
DH.Y
0
/andedgelength
smax
˚
kH
0
.Y/k
1
ˇ
ˇ
Y2C
:
Therefore,
V.H.C//
maxfkH0.Y/k
1
n
ˇ
ˇ
Y2C
sn
D
maxfkH
0
.Y/k
1
n
ˇ
ˇ
Y2C
V.C/:
(7.3.30)
Nowlet
L.X/DA
1
X
andsetHDLıG;then
H.C/DL.G.C// and H
0
DA
1
G
0
;
so(7.3.30)impliesthat
V.L.G.C///
max
˚
kA
1
G
0
.Y/k
1
ˇ
ˇ
Y2C

n
V.C/:
(7.3.31)
SinceLislinear,Theorem7.3.7withAreplacedbyA
1
impliesthat
V.L.G.C///Djdet.A/
1
jV.G.C//:
Thisand(7.3.31)implythat
jdet.A
1
/jV.G.C//
max
˚
kA
1
G
0
.Y/k
1
ˇ
ˇ
Y2C

n
V.C/:
Sincedet.A
1
/D1=det.A/,thisimplies(7.3.29).
Lemma7.3.11
IfGWE
n
!R
n
isregularonacubeC inR
n
;then
V.G.C//
Z
C
jJG.Y/jdY:
(7.3.32)
498 Chapter7
IntegralsofFunctionsofSeveralVariables
Proof
LetPbeapartitionofCintosubcubesC
1
,C
2
,...,C
k
withcentersY
1
,Y
2
,...,
Y
k
.Then
V.G.C//D
Xk
jD1
V.G.C
j
//:
(7.3.33)
ApplyingLemma7.3.10toC
j
withADG
0
.A
j
/yields
V.G.C
j
//jJG.Y
j
/j
max
˚
k.G
0
.Y
j
//
1
G
0
.Y/k
1
ˇ
ˇ
Y2C
j

n
V.C
j
/:
(7.3.34)
Exercise6.1.22impliesthatif>0,thereisaı>0suchthat
max
˚
k.G
0
.Y
j
//
1
G
0
.Y/k
1
ˇ
ˇ
Y2C
j
<1C; 1j j k; if kPk<ı:
Therefore,from(7.3.34),
V.G.C
j
//.1C/
n
jJG.Y
j
/jV.C
j
/;
so(7.3.33)impliesthat
V.G.C//.1C/
n
Xk
jD1
jJG.Y
j
/jV.C
j
/ if kPk<ı:
SincethesumontherightisaRiemannsumfor
R
C
jJG.Y/jdYandcanbetakenarbi-
trarilysmall,thisimplies(7.3.32).
Lemma7.3.12
SupposethatS isJordanmeasurableand; > 0:Thenthereare
cubes C
1
;C
2
;...;C
r
inS withedgelengths< ;suchthatC
j
 S;1   j   r;
C
0
i
\C
0
j
D;ifi¤j;and
V.S/
Xr
jD1
V.C
j
/C:
(7.3.35)
Proof
SinceSisJordanmeasurable,
Z
C
S
.X/dXDV.S/
ifCisanycubecontainingS.Fromthisandthedefinitionoftheintegral,thereisaı>0
suchthatifPisanypartitionofCwithkPk<ıandisanyRiemannsumof 
S
over
P,then>V.S/=2.Therefore,ifs.P/isthelowersumof 
S
overP,then
s.P/>V.S/ if kPk<ı:
(7.3.36)
NowsupposethatP D D fC
1
;C
2
;:::;C
k
g isapartitionofC intocubes s withkPk <
min.;ı/, andletC
1
, C
2
, ..., , C
k
benumberedsothatC
j
 S if1  j   r and
C
j
\Sc ¤ ¤ ;ifj > > r. From(7.3.4),s.P/ D
P
r
jD1
V.C
k
/. Thisand(7.3.36)imply
(7.3.35).Clearly,C
0
i
\C
0
j
D;ifi¤j.
Section7.3
ChangeofVariablesinMultipleIntegrals
499
Lemma7.3.13
SupposethatGWE
n
!R
n
isregularonacompactJordanmeasur-
ablesetSandf iscontinuousandnonnegativeonG.S/:Let
Q.S/D
Z
G.S/
f.X/dX
Z
S
f.G.Y//jJG.Y/jdY:
(7.3.37)
ThenQ.S/0:
Proof
FromthecontinuityofJGandf onthecompactsetsS S andG.S/, thereare
constantsM
1
andM
2
suchthat
jJG.Y/jM
1
if Y2S
(7.3.38)
and
jf.X/jM
2
if X2G.S/
(7.3.39)
(Theorem5.2.11). Nowsupposethat> > 0. . Sincef ıGisuniformlycontinuousonS
(Theorem5.2.14),thereisaı>0suchthat
jf.G.Y//f.G.Y
0
//j< if jYY
0
j<ıandY;Y
0
2S:
(7.3.40)
NowletC
1
,C
2
,...,C
r
bechosenasdescribedinLemma7.3.12,withDı=
p
n.Let
S
1
D
8
<
:
Y2S
ˇ
ˇ
Y…
r
[
jD1
C
j
9
=
;
:
ThenV.S
1
/<and
SD
0
@
[r
jD1
C
j
1
A
[S
1
:
(7.3.41)
SupposethatY
1
,Y
2
,...,Y
r
arepointsinC
1
,C
2
,...,C
r
andX
j
DG.Y
j
/,1j r.
From(7.3.41)andTheorem7.1.30,
Q.S/D
Z
G.S
1
/
f.X/dX
Z
S
1
f.G.Y//jJG.Y/jdY
C
Xr
jD1
Z
G.C
j
/
f.X/dX
Xr
jD1
Z
C
j
f.G.Y//jJG.Y/jdY
D
Z
G.S
1
/
f.X/dX
Z
S
1
f.G.Y//jJG.Y/jdY
C
Xr
jD1
Z
G.C
j
/
.f.X/f.A
j
//dX
C
r
X
jD1
Z
C
j
..f.G.Y
j
//f.G.Y///jJ.G.Y/jdY
C
r
X
jD1
f.X
j
/
V.G.C
j
//
Z
C
j
jJG.Y/jdY
!
:
500 Chapter7
IntegralsofFunctionsofSeveralVariables
Sincef.X/0,
Z
S
1
f.G.Y//jJG.Y/jdY0;
andLemma7.3.11impliesthatthelastsumisnonpositive.Therefore,
Q.S/I
1
CI
2
CI
3
;
(7.3.42)
where
I
1
D
Z
G.S
1
/
f.X/dX; I
2
D
r
X
jD1
Z
G.C
j
/
jf.X/f.X
j
/jdX;
and
I
3
D
Xr
jD1
Z
C
j
jf.G/.Y
j
//f.G.Y//jjJG.Y/jdY:
Wewillnowestimatethesethreeterms.Supposethat>0.
ToestimateI
1
,wefirstremindyouthatsinceGisregularonthecompactsetS,Gis
alsoregularonsomeopensetOcontainingS(Definition6.3.2).Therefore,sinceS
1
S
andV.S
1
/<,S
1
canbecoveredbycubesT
1
,T
2
,...,T
m
suchthat
Xr
jD1
V.T
j
/<
(7.3.43)
andGisregularon
S
m
jD1
T
j
.Now,
I
1
M
2
V.G.S
1
//
(from(7.3.39))
M
2
Xm
jD1
V.G.T
j
//
.sinceS
1
[
m
jD1
T
j
/
M
2
Xm
jD1
Z
T
j
jJG.Y/jdY (fromLemma7.3.11)
M
2
M
1
(from(7.3.38)and(7.3.43)):
ToestimateI
2
,wenotethatifXandX
j
areinG.C
j
/thenXDG.Y/andX
j
DG.Y
j
/
forsomeYandY
j
inC
j
. SincetheedgelengthofC
j
islessthanı=
p
n,itfollowsthat
jYY
j
j<ı,sojf.X/f.X
j
/j<,by(7.3.40).Therefore,
I
2
<
Xr
jD1
V.G.C
j
//

Xr
jD1
Z
C
j
jJG.Y/jdY
(fromLemma7.3.11)
M
1
r
X
jD1
V.C
j
/
(from(7.3.38)/
M
1
V.S/
.since [
r
jD1
C
j
S/:
Section7.3
ChangeofVariablesinMultipleIntegrals
501
ToestimateI
3
,wenoteagainfrom(7.3.40)thatjf.G.Y
j
//f.G.Y//j <ifYand
Y
j
areinC
j
.Hence,
I
3
<
Xr
jD1
Z
C
j
jJG.Y/jdY
M
1
Xr
jD1
V.C
j
/ (from(7.3.38)
M
1
V.S/
because
S
r
jD1
C
j
SandC
0
i
\C
0
j
D;ifi¤j.
FromtheseinequalitiesonI
1
,I
2
,andI
3
,(7.3.42)nowimpliesthat
Q.S/<M
1
.M
2
C2V.S//:
Sinceisanarbitrarypositivenumber,itnowfollowsthatQ.S/0.
Lemma7.3.14
UndertheassumptionsofLemma7.3.13;Q.S/0:
Proof
Let
G
1
DG
1
; S
1
DG.S/; f
1
D.jJGj/f ıG;
(7.3.44)
and
Q
1
.S
1
/D
Z
G
1
.S
1
/
f
1
.Y/dY
Z
S
1
f
1
.G
1
.X//jJG
1
.X/jdX:
(7.3.45)
SinceG
1
is regularonS
1
(Theorem 6.3.3)and d f
1
is continuousand d nonnegative on
G
1
.S
1
/DS,Lemma7.3.13impliesthatQ
1
.S
1
/0.However,substitutingfrom(7.3.44)
into(7.3.45)andagainnotingthatG
1
.S
1
/DSyields
Q
1
.S
1
/D
Z
S
f.G.Y//jJG.Y/jdY
Z
G.S/
f.G.G
1
.X///jJG.G
1
.X//jjJG
1
.X/jdX:
(7.3.46)
SinceG.G1.X//DX,f.G.G1.X///Df.X/.However,itisimportanttointerpretthe
symbolJG.G1.X//properly.WearenotsubstitutingG1.X/intoGhere;rather,weare
evaluatingthedeterminantofthedifferentialmatrixofGatthepointYDG
1
.X/.From
Theorems6.1.9and 6.3.3,
jJG.G
1
.X//jjJG
1
.X/jD1;
so(7.3.46)canberewrittenas
Q
1
.S
1
/D
Z
S
f.G.Y//jJG.Y/jdY
Z
G.S/
f.X/dXDQ.S/:
SinceQ
1
.S
1
/0,itnowfollowsthatQ.S/0.
Documents you may be interested
Documents you may be interested