﻿

# pdfsharp c# : Add hyperlinks pdf file software Library project winforms asp.net html UWP TRENCH_REAL_ANALYSIS54-part275

532 Chapter8
MetricSpaces
Theorem8.1.23
SupposethatandareequivalentmetricsonA:Then
(a)
Asequencefu
n
gconvergestouin.A;/ifandonlyifitconvergestouin.A;/:
(b)
Asequencefu
n
gisaCauchysequencein.A;/ifandonlyifitisaCauchysequence
in.A;/:
(c)
.A;/iscompleteifandonlyif.A;/iscomplete:
8.1Exercises
1.
Showthat
(a)
,
(b)
,and
(c)
ofDeﬁnition8.1.1areequivalentto
(i)
.u;v/D0ifandonlyifuDv;
(ii)
.u;v/.w;u/C.w;v/.
2.
Prove:Ifx,y,u,andvarearbitrarymembersofametricspace.A;/,then
j.x;y/.u;v/j.x;u/C.v;y/:
3. (a)
Supposethat.A;/isametricspace,anddeﬁne
1
.u;v/D
.u;v/
1C.u;v/
:
Showthat.A;
1
/isametricspace.
(b)
ShowthatinﬁnitelymanymetricscanbedeﬁnedonanysetAwithmorethan
onemember.
4.
Let.A;/beametricspace,andlet
.u;v/D
.u;v/
1C.u;v/
:
ShowthatasubsetofAisopenin.A;/ifandonlyifitisopenin.A;/.
5.
ShowthatifAisanarbitrarynonemptyset,then
.u;v/D
0 ifvDu;
1 ifv¤u;
isametriconA.
6.
Supposethat.A;/isametricspace,u
0
2A,andr>0.
(a)
Showthat
S
r
.u
0
/
˚
u
ˇ
ˇ
.u;u
0
/r
ifAcontainsmorethanonepoint.
(b)
Verifythatifisthediscretemetric,then
S
1
.u
0
˚
u
ˇ
ˇ
.u;u
0
/1
.
Add hyperlinks pdf file - insert, remove PDF links in C#.net, ASP.NET, MVC, Ajax, WinForms, WPF
Free C# example code is offered for users to edit PDF document hyperlink (url), like inserting and deleting
add hyperlink to pdf acrobat; pdf link to attached file
Add hyperlinks pdf file - VB.NET PDF url edit library: insert, remove PDF links in vb.net, ASP.NET, MVC, Ajax, WinForms, WPF
Help to Insert a Hyperlink to Specified PDF Document Page
c# read pdf from url; pdf hyperlinks
Section8.1
IntroductiontoMetricSpaces
533
7.
Prove:
(a)
Theintersectionofﬁnitelymanyopensetsisopen.
(b)
Theunionofﬁnitelymanyclosedsetsisclosed.
8.
Prove:
(a)
IfU isaneighborhoodofu
0
andUV,thenV isaneighborhoodofu
0
.
(b)
IfU
1
,U
2
,...,U
n
areneighborhoodsofu
0
,sois\
n
iD1
U
i
.
9.
Prove:AlimitpointofasetSiseitheraninteriorpointoraboundarypointofS.
10.
Prove:AnisolatedpointofSisaboundarypointofSc.
11.
Prove:
(a)
AboundarypointofasetSiseitheralimitpointoranisolatedpointofS.
(b)
AsetSisclosedifandonlyifSD
S.
12.
LetSbeanarbitraryset.Prove:
(a)
@Sisclosed.
(b)
S0isopen.
(c)
Theexterior
ofSisopen.
(d)
ThelimitpointsofSformaclosedset.
(e)
S
D
S.
13.
Prove:
(a)
.S
1
\S
2
/DS0
1
\S0
2
(b)
S0
1
[S0
2
.S
1
[S
2
/0
14.
Prove:
(a)
@.S
1
[S
2
/@S
1
[@S
2
(b)
@.S
1
\S
2
/@S
1
[@S
2
(c)
@
S@S
(d)
@SD@S
c
(e)
@.ST/@S[@T
15.
Showthat
kXkDmaxfjx
1
j;jx
2
j;:::;jx
n
jg
isanormonR
n
.
16.
Supposethat.A
i
;
i
/,1i k,aremetricspaces.Let
1
A
2
A
k
D
˚
XD.x
1
;x
2
;:::;x
k
/
ˇ
ˇ
x
i
2A
i
;1ik
:
IfXandYareinA,let
.X;Y/D
Xk
iD1
.x
i
;y
i
/:
(a)
ShowthatisametriconA.
C# PDF Convert to HTML SDK: Convert PDF to html files in C#.net
Export PDF images to HTML images. Embed PDF hyperlinks to HTML links. Add necessary references: RasterEdge.Imaging.Basic.dll. using RasterEdge.XDoc.PDF;
VB.NET PDF Convert to HTML SDK: Convert PDF to html files in vb.
Embed PDF hyperlinks to HTML links in VB.NET. Add necessary references: This professional .NET solution that is designed to convert PDF file to HTML web page
534 Chapter8
MetricSpaces
(b)
LetfX
r
g
1
rD1
Df.x
1r
;x
2r
;:::;x
kr
/g
1
rD1
beasequenceinA.Showthat
lim
r!1
X
r
D
b
XD.bx
1
;bx
2
;:::;bx
k
/
ifandonlyif
lim
r!1
x
ir
Dbx
i
; 1ik:
(c)
ShowthatfX
r
g
1
rD1
isaCauchysequencein.A;/ifandonlyiffx
ir
g
1
rD1
isa
Cauchysequencein.A
i
;
i
/,1i k.
(d)
Showthat.A;/iscompleteifandonlyif.A
i
;
i
/iscomplete,1ik.
17.
Foreachpositiveintegeri,let.A
i
;
i
/beametricspace. LetAbethesetofall
objectsoftheformXD.x
1
;x
2
;:::;x
n
;:::/,wherex
i
2A
i
,i1.(Forexample,
ifA
i
1
.)Letf˛
i
g
1
iD1
beanysequenceofpositivenumbers
suchthat
P
1
iD1
˛
i
<1.
(a)
Showthat
.X;Y/D
X1
iD1
˛
i
i
.x
i
;y
i
/
1C
i
.x
i
;y
i
/
isametriconA.
(b)
LetfX
r
g
1
rD1
Df.x
1r
;x
2r
;:::;x
nr
;:::/g
1
rD1
beasequenceinA.Showthat
lim
r!1
X
r
D
b
XD.bx
1
;bx
2
;:::;bx
n
;:::/
ifandonlyif
lim
r!1
x
ir
Dbx
i
; i1:
(c)
ShowthatfX
r
g
1
rD1
isaCauchysequencein.A;/ifandonlyiffx
ir
g
1
rD1
isa
Cauchysequencein.A
i
;
i
/foralli 1.
(d)
Showthat.A;/iscompleteifandonlyif.A
i
;
i
/iscompleteforalli1.
18.
LetCŒ0;1/bethesetofallreal-valuedfunctionscontinuousonŒ0;1/. Foreach
nonnegativeintegern,let
kfk
n
Dmax
˚
jf.x/j
ˇ
ˇ
0xn
and
n
.f;g/D
kf gk
n
1Ckfgk
n
:
Deﬁne
.f;g/D
X1
nD1
1
2n1
n
.f;g/:
(a)
ShowthatisametriconCŒ0;1/.
VB.NET PDF Page Replace Library: replace PDF pages in C#.net, ASP.
all PDF page contents in VB.NET, including text, image, hyperlinks, etc. Add necessary references to replace a PDF page with PDF page from other PDF file using VB
VB.NET PDF Thumbnail Create SDK: Draw thumbnail images for PDF in
PDF document is an easy work and gives quick access to PDF page and file, or even hyperlinks. How to VB.NET: Create Thumbnail for PDF. Add necessary references:
Section8.1
IntroductiontoMetricSpaces
535
(b)
Letff
k
g
1
kD1
beasequenceoffunctionsinCŒ0;1/.Showthat
lim
k!1
f
k
Df
inthesenseofDeﬁnition8.1.14ifandonlyif
lim
k!1
f
k
.x/Df.x/
uniformlyoneveryﬁnitesubintervalofŒ0;1/.
(c)
Showthat.CŒ0;1/;/iscomplete.
19.
ShowthatMinkowski’sinequalityisfalseif0<p<1.
20.
Supposethat0<p<1.Showthatifuandvarenonnegative,then
.uCv/
p
u
p
Cv
p
:
UsethistoshowthatifX,Y2R
n
,
.X/D
n
X
iD1
jx
i
j
p
; and .Y/D
n
X
iD1
jy
i
j
p
;
then
.XCY/.X/C.Y/:
IsanormonR
n
?
21.
SupposethatXDfx
i
g
1
iD1
isin`
p
,wherep>1.Showthat
(a)
X2`
r
forallr>p;
(b)
Ifr>p,thenkXk
r
kXk
p
;
(c)
lim
r!1
kXk
r
DkXk
1
.
22.
Let.A;/beametricspace.
(a)
Supposethatfu
n
gandfv
n
garesequencesinA,lim
n!1
u
n
Du,andlim
n!1
v
n
D
v.Showthatlim
n!1
.u
n
;v
n
/D.u;v/.
(b)
Concludefrom
(b)
thatiflim
n!1
u
n
D uandv isarbitraryinA, then
lim
n!1
.u
n
;v/D.u;v/.
23.
Prove: Iffu
r
g
1
rD1
isaCauchysequenceinanormedvectorspace.A;kk/,then
fku
r
kg
1
rD1
isbounded.
24.
Let
(
X2R
1
ˇ
ˇ
thepartialsums
X1
iD1
x
i
;n1;arebounded
)
:
(a)
Showthat
kXkDsup
n1
ˇ
ˇ
ˇ
ˇ
ˇ
Xn
iD1
x
i
ˇ
ˇ
ˇ
ˇ
ˇ
isanormonA.
(b)
Let.X;Y/DkXYk.Showthat.A;/iscomplete.
PDF Image Viewer| What is PDF
with advanced capabilities, such as text extraction, hyperlinks, bookmarks and NET Imaging SDK, you may add it on you to quickly convert your PDF images into
.NET PDF SDK | Read & Processing PDF files
by this .NET Imaging PDF Reader Add-on. Include extraction of text, hyperlinks, bookmarks and metadata; Annotate and redact in PDF documents; Fully support all
536 Chapter8
MetricSpaces
25. (a)
Showthat
kfkD
Z
b
a
jf.x/jdx
isanormonCŒa;b,
(b)
Showthatthesequenceff
n
gdeﬁnedby
f
n
.x/D
xa
ba
n
isaCauchysequencein.CŒa;b;kk/.
(c)
Showthat.CŒa;b;kk/isnotcomplete.
26. (a)
Verifythat`
1
isanormedvectorspace.
(b)
Showthat`
1
iscomplete.
27.
LetAbethesubsetofR
1
consistingofconvergentsequencesXDfx
i
g
1
iD1
.Deﬁne
kXkDsup
i1
jx
i
j.Showthat.A;kk/isacompletenormedvectorspace.
28.
LetAbethesubsetofR
1
consistingofsequencesXDfx
i
g
1
iD1
suchthatlim
i!1
x
i
D
0.DeﬁnekXkDmax
˚
jx
i
j
ˇ
ˇ
i1
.Showthat.A;kk/isacompletenormedvector
space.
29. (a)
ShowthatR
n
p
iscompleteifp1.
(b)
Showthat`
p
iscompleteifp1.
30.
ShowthatifXDfx
i
g1
iD1
2 `
p
andYD fy
i
g1
iD1
2 `
q
,where1=pC1=qD1,
thenZDfx
i
y
i
g2`
1
.
8.2COMPACTSETSINAMETRICSPACE
Throughoutthissectionitistobeunderstoodthat.A;/isametricspaceandthatthesets
underconsiderationaresubsetsofA.
WesaythatacollectionH ofopensubsetsofAisanopencoveringofT T ifT T 
[
˚
H
ˇ
ˇ
H2H
. WesaythatT T hastheHeine–BorelpropertyifeveryopencoveringH
ofT containsaﬁnitecollection
b
Hsuchthat
T [
n
H
ˇ
ˇ
H 2
b
H
o
:
FromTheorem1.3.7,everynonemptyclosedandboundedsubsetoftherealnumbers
hastheHeine–Borelproperty.Moreover,fromExercise1.3.21,anynonemptysetofreals
thathastheHeine–Borelpropertyisclosedandbounded.Giventheseresults,wedeﬁned
acompactsetofrealstobeaclosedandboundedset,andwenowdrawthefollowing
conclusion:
AnonemptysetofrealnumbershastheHeine–Borelpropertyifandonlyifitiscompact.
Section8.2
CompactSetsinaMetricSpace
537
Thedeﬁnitionofboundednessofasetofrealnumbersisbasedontheorderingofthe
realnumbers:ifaandbaredistinctrealnumberstheneithera<borb<a.Sincethere
isnosuchorderinginageneralmetricspace,weintroducethefollowingdeﬁnition.
Deﬁnition8.2.1
ThediameterofanonemptysubsetSofAis
d.S/Dsup
˚
.u;v/
ˇ
ˇ
u;v2T
:
Ifd.S/<1thenSisbounded.
Aswewillseebelow,aclosedandboundedsubsetofageneralmetricspacemayfail
tohavetheHeine–Borelproperty. Sincewewant“compact"and“hastheHeine–Borel
property"tobesynonymousinconnectionwithageneralmetricspace,wesimplymake
thefollowingdeﬁnition.
Deﬁnition8.2.2
AsetTiscompactifithastheHeine–Borelproperty.
Theorem8.2.3
AninﬁnitesubsetT ofAiscompactifandonlyifeveryinﬁnitesubset
ofThasalimitpointinT:
Proof
SupposethatT hasaninﬁnitesubsetEwithnolimitpointinT.Then,ift2T,
thereisanopensetH
t
suchthatt2H
t
andH
t
containsatmostonememberofE.Then
HD[
˚
H
t
ˇ
ˇ
t2T
isanopencoveringofT,butnoﬁnitecollectionfH
t
1
;H
t
2
;:::;H
t
k
g
ofsetsfromHcancoverE,sinceEisinﬁnite.Therefore,nosuchcollectioncancoverT;
thatis,Tisnotcompact.
NowsupposethateveryinﬁnitesubsetofThasalimitpointinT,andletHbeanopen
coveringofT.WeﬁrstshowthatthereisasequencefH
i
g
1
iD1
ofsetsfromHthatcovers
T.
If>0,thenT canbecoveredby-neighborhoodsofﬁnitelymanypointsofT. We
1
2T.IfN
.t
1
/doesnotcoverT,thereisat
2
2T such
that.t
1
;t
2
/ . . Nowsupposethatn  2andwehavechosent
1
,t
2
,..., t
n
suchthat
.t
i
;t
j
/,1i <j j n. . If[
n
iD1
N
.t
i
/doesnotcoverT,thereisat
nC1
2T such
that.t
i
;t
nC1
/,1i n. . Therefore,.t
i
;t
j
/,1i <j j nC1. . Hence,
byinduction,ifnoﬁnitecollectionof-neighborhoodsofpointsinT coversT,thereisan
inﬁnitesequenceft
n
g
1
nD1
inTsuchthat.t
i
;t
j
/,i ¤j. Suchasequencecouldnot
havealimitpoint,contrarytoourassumption.
Bytakingsuccessivelyequalto1,1=2,..., 1=n,...,wecannowconcludethat,for
eachn,therearepointst
1n
,t
2n
,...,t
k
n
;n
suchthat
T 
k
n
[
iD1
N
1=n
.t
in
/:
DenoteB
in
DN
1=n
.t
in
/,1in,n1,anddeﬁne
fG
1
;G
2
;G
3
;:::gDfB
11
;:::;B
k
1
;1
;B
12
;:::;B
k
2
;2
;B
13
;:::;B
k
3
;3
;:::g:
538 Chapter8
MetricSpaces
Ift2T,thereisanHinHsuchthatt2H.SinceHisopen,thereisan>0such
thatN
.t/H.Sincet2G
j
forinﬁnitelymanyvaluesofj andlim
j!1
d.G
j
/D0,
G
j
N
.t/H
forsomej.Therefore,iffG
j
i
g
1
iD1
isthesubsequenceoffG
j
gsuchthatG
j
i
isasubsetof
someH
i
inH(thefH
i
garenotnecessarilydistinct),then
T 
[1
iD1
H
i
:
(8.2.1)
Wewillnowshowthat
T 
[N
iD1
H
i
:
(8.2.2)
forsomeintegerN.Ifthisisnotso,thereisaninﬁnitesequenceft
n
g
1
nD1
inTsuchthat
t
n
[n
iD1
H
i
; n1:
(8.2.3)
Fromourassumption,ft
n
g
1
nD1
hasalimit
tinT. From(8.2.1),
t 2 2 H
k
forsomek,so
N
.
t/H
k
forsome>0.Sincelim
n!1
t
n
D
t,thereisanintegerNsuchthat
t
n
2N
.
t/H
k
[n
iD1
H
i
; n>k;
AnyﬁnitesubsetofametricspaceobviouslyhastheHeine–Borelpropertyandisthere-
forecompact.SinceTheorem8.2.3doesnotdealwithﬁnitesets,itisoftenmoreconvenient
toworkwiththefollowingcriterionforcompactness,whichisalsoapplicabletoﬁnitesets.
Theorem8.2.4
AsubsetT ofametricAiscompactifandonlyifeveryinﬁnitese-
quenceft
n
gofmembersofThasasubsequencethatconvergestoamemberofT:
Proof
SupposethatT iscompactandft
n
gT.Ifft
n
ghasonlyﬁnitelymanydistinct
terms,thereisa
tinT suchthatt
n
D
t forinﬁnitelymanyvaluesofn;ifthisissofor
n
1
<n
2
<,thenlim
j!1
t
n
j
D
t. Ifft
n
ghasinﬁnitelymanydistinctterms,thenft
n
g
hasalimitpoint
tinT,sothereareintegersn
1
<n
2
< suchthat.t
n
j
;
t/ <1=j;
therefore,lim
j!1
t
n
j
D
t.
Conversely,supposethateverysequenceinThasasubsequencethatconvergestoalimit
inT. IfSisaninﬁnitesubsetofT,wecanchooseasequenceft
n
gofdistinctpointsin
S.Byassumption,ft
n
ghasasubsequencethatconvergestoamember
tofT.Since
tisa
limitpointofft
n
g,andthereforeofT,T iscompact.
Theorem8.2.5
IfTiscompact;theneveryCauchysequenceft
n
g
1
nD1
inTconverges
toalimitinT:
Section8.2
CompactSetsinaMetricSpace
539
Proof
ByTheorem8.2.4,ft
n
ghasasubsequenceft
n
j
gsuchthat
lim
j!1
t
n
j
D
t2T:
(8.2.4)
Wewillshowthatlim
n!1
t
n
D
t.
Supposethat> 0. . Sinceft
n
gisaCauchysequence,thereisanintegerN suchthat
.t
n
;t
m
/<,n>mN.From(8.2.4),thereisanmDn
j
Nsuchthat.t
m
;
t/<.
Therefore,
.t
n
;
t/.t
n
;t
m
/C.t
m
;
t/<2; nm:
Theorem8.2.6
IfTiscompact;thenTisclosedandbounded.
Proof
Supposethat
tisalimitpointofT. Foreachn,chooset
n
¤
t 2B
1=n
.
t/\T.
Thenlim
n!1
t
n
D
t. Sinceeverysubsequenceofft
n
galsoconvergesto
t,
t 2 2 T,by
Theorem8.2.3.Therefore,T isclosed.
ThefamilyofunitopenballsHD
˚
B
1
.t/
ˇ
ˇ
t2T
isanopencoveringofT.SinceTis
compact,thereareﬁnitelymanymemberst
1
,t
2
,...,t
n
ofT suchthatS [
n
jD1
B
1
.t
j
/.
IfuandvarearbitrarymembersofT,thenu2B
1
.t
r
/andv2B
1
.t
s
/forsomerandsin
f1;2;:::;ng,so
.u;v/.u;t
r
/C.t
r
;t
s
/C.t
s
;v/
2C.t
r
;t
s
/2Cmax
˚
.t
i
;t
j
/
ˇ
ˇ
1i<j n
:
Therefore,Tisbounded.
TheconverseofTheorem8.2.6isfalse;forexample,ifAisanyinﬁnitesetequipped
withthediscretemetric(Example8.1.2.),theneverysubsetofAisboundedandclosed.
However,ifTisaninﬁnitesubsetofA,thenHD
˚
ftg
ˇ
ˇ
t2T
isanopencoveringofT,
butnoﬁnitesubfamilyofHcoversT.
Deﬁnition8.2.7
AsetT istotallyboundedifforevery>0thereisaﬁnitesetT
withthefollowingproperty:ift2T,thereisans2T
suchthat.s;t/<.Wesaythat
T
isaﬁnite-netforT.
Weleaveittoyou(Exercise8.2.4)toshowthateverytotallyboundedsetisboundedand
thattheconverseisfalse.
540 Chapter8
MetricSpaces
Theorem8.2.8
IfTiscompact;thenTistotallybounded.
Proof
WewillprovethatifT isnottotallybounded,thenT isnotcompact.IfT isnot
totallybounded,thereisan>0suchthatthereisnoﬁnite-netforT.Lett
1
2T.Then
theremustbeat
2
inT suchthat.t
1
;t
2
/>. (Ifnot,thesingletonsetft
1
gwouldbea
ﬁnite-netforT.) Nowsupposethatn2andwehavechosent
1
,t
2
,...,t
n
suchthat
.t
i
;t
j
/,1i <j j n. . Thentheremustbeat
nC1
2T suchthat.t
i
;t
nC1
/,
1i n.(Ifnot,ft
1
;t
2
;:::;t
n
gwouldbeaﬁnite-netforT.)Therefore,.t
i
;t
j
/,
1i <j nC1. Hence,byinduction,thereisaninﬁnitesequenceft
n
g
1
nD1
inT such
that.t
i
;t
j
/,i ¤j.Sincesuchasequencehasnolimitpoint,T isnotcompact,by
Theorem8.2.4.