542 Chapter8
MetricSpaces
Theorem2.2.8impliesthatforeachf inCŒa;bthereisaconstantM
f
whichdepends
onf,suchthat
jf.x/jM
f
if axb;
andTheorem2.2.12impliesthatthereisaconstantı
f
whichdependsonfandsuchthat
jf.x
1
/f.x
2
/j if x
1
;x
2
2Œa;b and jx
1
x
2
j<ı
f
:
ThedifferenceinDefinition8.2.11isthatthesameMandıapplytoallfinT.
Theorem8.2.11
AnonemptysubsetTofCŒa;biscompactifandonlyifitisclosed;
uniformlybounded;andequicontinuous.
Proof
Fornecessity, supposethatT T iscompact. . ThenT T isclosed(Theorem8.2.6)
andtotallybounded(Theorem8.2.8). Therefore,if  >0,thereisafinitesubsetT
D
fg
1
;g
2
;:::;g
k
gofCŒa;bsuchthatiff 2T,thenkfg
i
kforsomeiinf1;2;:::;kg.
IfwetemporarilyletD1,thisimpliesthat
kfkDk.fg
i
/Cg
i
kkfg
i
kCkg
i
k1Ckg
i
k;
whichimplies(8.2.6)with
MD1Cmax
˚
kg
i
k
ˇ
ˇ
1ik
:
For(8.2.7),weagainletbearbitary,andwrite
jf.x
1
/f.x
2
/jjf.x
1
/g
i
.x
1
/jCjg
i
.x
1
/g
i
.x
2
/jCjg
i
.x
2
/f.x
2
/j
jg
i
.x
1
/g
i
.x
2
/jC2kfg
i
k
<jg
i
.x
1
/g
i
.x
2
/jC2:
(8.2.8)
Sinceeachofthefinitelymanyfunctionsg
1
,g
2
,...,g
k
isuniformlycontinuousonŒa;b
(Theorem2.2.12),thereisaı>0suchthat
jg
i
.x
1
/g
i
.x
2
/j< if jx
1
x
2
j<ı; 1ik:
Thisand(8.2.8)imply(8.2.7)with replacedby3. Sincethisreplacementisofno
consequence,thisprovesnecessity.
Forsufficiency,wewillshowthatTistotallybounded.SinceTisclosedbyassumption
andCŒa;biscomplete,Theorem8.2.9willthenimplythatT iscompact.
Letmandnbepositiveintegersandlet
r
DaC
r
m
.ba/; 0rm; and
s
D
sM
n
; nsnI
thatis,a D
0
< 
1
< <
m
D bisapartitionofŒa;bintosubintervalsoflength
.ba/=m,andM D D 
n
<
nC1
< < 
n1
< 
n
DM isapartitionofthe
Pdf edit hyperlink - insert, remove PDF links in C#.net, ASP.NET, MVC, Ajax, WinForms, WPF
Free C# example code is offered for users to edit PDF document hyperlink (url), like inserting and deleting
check links in pdf; add a link to a pdf in preview
Pdf edit hyperlink - VB.NET PDF url edit library: insert, remove PDF links in vb.net, ASP.NET, MVC, Ajax, WinForms, WPF
Help to Insert a Hyperlink to Specified PDF Document Page
add a link to a pdf; adding a link to a pdf
Section8.2
CompactSetsinaMetricSpace
543
segmentofthey-axisbetweeny DMandyDM intosubsegmentsoflengthM=n.
LetS
mn
bethesubsetofCŒa;bconsistingoffunctionsgsuchthat
fg.
0
/;g.
1
/;:::;g.
m
/gf
n
;
nC1
:::;
n1
;
n
g
andgislinearonŒ
i1
;
i
,1i m.Sincethereareonly.mC1/.2nC1/pointsofthe
form.
r
;
s
/,S
mn
isafinitesubsetofCŒa;b.
Nowsupposethat>0,andchooseı>0tosatisfy(8.2.7). Choosemandnsothat
.ba/=m<ıand2M=n<.IffisanarbitrarymemberofT,thereisaginS
mn
such
that
jg.
i
/f.
i
/j<; 0i i m:
(8.2.9)
If0im1,
jg.
i
/g.
iC1
/jDjg.
i
/f.
i
/jCjf.
i
/f.
iC1
/jCjf.
iC1
/g.
iC1
/j: (8.2.10)
Since
iC1

i
<ı,(8.2.7),(8.2.9),and(8.2.10)implythat
jg.
i
/g.
iC1
/j<3:
Therefore,
jg.
i
/g.x/j<3; 
i
x
iC1
;
(8.2.11)
sincegislinearonŒ
i
;
iC1
.
NowletxbeanarbitrarypointinŒa;b,andchooseisothatx2Œ
i
;
iC1
.Then
jf.x/g.x/jjf.x/f.
i
/jCjf.
i
/g.
i
/jCjg.
i
/g.x/j;
so(8.2.7),(8.2.9),and(8.2.11)implythatjf.x/g.x/j<5,axb.Therefore,S
mn
isafinite5-netforT,soTistotallybounded.
Theorem8.2.12(AscoliArzelaTheorem)
SupposethatF isaninfiniteuni-
formlyboundedandequicontinuousfamilyoffunctionsonŒa;b:Thenthereisasequence
ff
n
ginF thatconvergesuniformlytoacontinuousfunctiononŒa;b:
Proof
LetT betheclosureofF;thatis,f f 2 2 T T ifandonlyifeitherf f 2 2 T T orf
istheuniformlimitofasequenceofmembersofF. ThenT T isalsouniformlybounded
andequicontinuous(verify),andT isclosed. . Hence,T T iscompact,byTheorem8.2.12.
Therefore,F hasalimitpointinT. (Inthiscontext,thelimitpointisafunctionf f in
T.)Sincef isalimitpointofF,thereisforeachintegernafunctionf
n
inF suchthat
kf
n
fk<1=n;thatisff
n
gconvergesuniformlytof onŒa;b.
8.2Exercises
1.
SupposethatT
1
,T
2
,...,T
k
arecompactsetsinametricspace.A;/. Showthat
[k
jD1
T
j
iscompact.
How to C#: Basic SDK Concept of XDoc.PDF for .NET
XDoc.PDF for .NET allows C# developers to edit hyperlink of PDF document, including editing PDF url links and quick navigation link in bookmark/outline.
add links to pdf; add url pdf
VB.NET PDF: Basic SDK Concept of XDoc.PDF
XDoc.PDF for .NET allows VB.NET developers to edit hyperlink of PDF document, including editing PDF url links and quick navigation link in bookmark/outline.
pdf edit hyperlink; clickable links in pdf files
544 Chapter8
MetricSpaces
2. (a)
Showthataclosedsubsetofacompactsetiscompact.
(b)
SupposethatT isanycollectionofclosedsubsetsofametricspace.A;/,
andsome
b
T inT T iscompact.Showthat\
˚
T
ˇ
ˇ
T 2T
iscompact.
(c)
ShowthatifT isacollectionofcompactsubsetsofametricspace.A;/,
then\
˚
T
ˇ
ˇ
T 2T
iscompact.
3.
IfS andT arenonemptysubsetsofametricspace.A;/,wedefinethedistance
fromStoT by
dist.S;T/Dinf
˚
.s;t/
ˇ
ˇ
s2S;t2T
:
ShowthatifSandT arecompact,thendist.S;T/D.s;t/forsomesinS and
sometinT.
4. (a)
Showthateverytotallyboundedsetisbounded.
(b)
Let
ı
ir
D
1
ifiDr;
0
ifi¤r;
andletT bethesubsetof`
1
consistingofthesequencesX
r
D fı
ir
g1
iD1
,
r1.ShowthatTisbounded,butnottotallybounded.
5.
LetT beacompactsubsetofametricspace.A;/.Showthattherearemembers
s
and
tofTsuchthatd.
s;
t/Dd.T/.
6.
LetTbethesubsetof`
1
suchthatjx
i
j
i
,i 1,where
P
1
iD1
i
<1.Show
thatT iscompact.
7.
LetT bethesubsetof`
2
suchthatjx
i
j
i
,i 1,where
P
1
i
2
i
<1. Show
thatT iscompact.
8.
LetS beanonemptysubsetofametricspace.A;/andletu
0
beanarbitrary
memberofA. ShowthatS S isboundedifandonlyifD D
˚
.u;u
0
/
ˇ
ˇ
u2S
is
bounded.
9.
Let.A;/beametricspace.
(a)
Prove:IfSisaboundedsubsetofA,then
S(closureofS)isbounded.Find
d.
S/.
(b)
Prove: IfeveryboundedclosedsubsetofAiscompact,then.A;/iscom-
plete.
10.
Let.A;/bethemetricspacedefinedinExercise8.1.16Let
T DT
1
T
2
T
k
;
whereT
i
A
i
andT
i
¤;,1i k. ShowthatT T iscompactifandonlyT
i
is
compactfor1i k.
11.
Let.A;/bethemetricspacedefinedinExercise8.1.17.Let
T DT
1
T
2
T
n
;
VB.NET PDF Library SDK to view, edit, convert, process PDF file
processing images contained in PDF file. Please click to see details. PDF Hyperlink Edit. RasterEdge PDF SDK for .NET package offers
adding hyperlinks to a pdf; add hyperlink pdf file
C# PDF Library SDK to view, edit, convert, process PDF file for C#
processing images contained in PDF file. Please click to see details. C#.NET: Edit PDF Hyperlink. RasterEdge PDF SDK for .NET package
add links to pdf document; add hyperlinks pdf file
Section8.3
ContinuousFunctionsonMetricSpaces
545
whereT
i
A
i
andT
i
¤;,i 1.ShowthatifT iscompact,thenT
i
iscompact
foralli1.
12.
LetfT
n
g1
nD1
beasequenceofnonemptyclosedsetsofametricspacesuchthat
(a)
T
1
iscompact;
(b)
T
nC1
T
n
,n1;and
(c)
lim
n!1
d.T
n
/ D0. . Showthat
\
1
nD1
T
n
containsexactlyonemember.
8.3CONTINUOUS FUNCTIONSONMETRICSPACES
InChapter westudiedreal-valuedfunctionsdefinedonsubsetsofR
n
,andinChapter6.4.
westudiedfunctionsdefinedonsubsetsofR
n
withvaluesinR
m
. Theseareexamplesof
functionsdefinedononemetricspacewithvaluesinanothermetricspace.(Ofcourse,the
twospacesarethesameifnDm.)
Inthissectionwebrieflyconsiderfunctionsdefinedonsubsetsofametricspace.A;/
withvaluesinametricspace.B;/.Weindicatethatf issuchafunctionbywriting
f W.A;/!.B;/:
Thedomainandrangeoff arethesets
D
f
D
˚
u2A
ˇ
ˇ
f.u/isdefined
and
R
f
D
˚
v2B
ˇ
ˇ
vDf.u/forsomeuinD
f
:
Definition8.3.1
Wesaythat
lim
u!
b
u
f.u/Dbv
ifbu2
D
f
andforeach>0thereisaı>0suchthat
.f.u/;bv/< if u2D
f
and
0<.u;bu/<ı:
(8.3.1)
Definition8.3.2
Wesaythatfiscontinuousatbuifbu2D
f
andforeach>0there
isaı>0suchthat
.f.u/;f.bu//< if u2D
f
\N
ı
.bu/:
(8.3.2)
Iff iscontinuousateverypointofasetS,thenfiscontinuousonS.
Notethat(8.3.2)canbewrittenas
f.D
f
\N
ı
.bu//N
.f.bu//:
Also,f isautomaticallycontinuousateveryisolatedpointofD
f
.(Why?)
VB.NET Create PDF from Excel Library to convert xlsx, xls to PDF
C#.NET edit PDF digital signatures, C#.NET edit PDF sticky note Merge all Excel sheets to one PDF file in VB Change Excel hyperlink to PDF hyperlink and bookmark.
add hyperlink to pdf online; add a link to a pdf in acrobat
C# Create PDF from Word Library to convert docx, doc to PDF in C#.
Able to get word count in PDF pages. Change Word hyperlink to PDF hyperlink and bookmark. Free online Word to PDF converter without email.
add link to pdf; adding an email link to a pdf
546 Chapter8
MetricSpaces
Example8.3.1
If.A;kk/isanormedvectorspace,thenTheorem8.3.5impliesthat
f.u/Dkukisacontinuousfunctionfrom.A;/toR,since
jkukkbukjkubuk:
HereweareapplyingDefinition8.3.2with.u;bu/Dkubukand.v;bv/Djvbvj.
Theorem8.3.3
Supposethatbu2
D
f
:Then
lim
u!
b
u
f.u/Dbv
(8.3.3)
ifandonlyif
lim
n!1
f.u
n
/Dbv
(8.3.4)
foreverysequencefu
n
ginD
f
suchthat
lim
n!1
u
n
Dbu:
(8.3.5)
Proof
Supposethat(8.3.3)is true, , andletfu
n
g beasequence inD
f
thatsatisfies
(8.3.5). Let > > 0andchooseı ı > > 0tosatisfy(8.3.1). . From(8.3.5), , thereisaninte-
gerN suchthat.u
n
;bu/<ıifn N. . Therefore,.f.u
n
/;bv/ <ifn N,which
implies(8.3.4).
Fortheconverse,supposethat(8.3.3)isfalse. Thenthereisan
0
>0andasequence
fu
n
ginD
f
suchthat.u
n
;bu/<1=nand.f.u
n
/;bv/
0
,so(8.3.4)isfalse.
Weleavetheproofofthenexttwotheoremstoyou.
Theorem8.3.4
Afunctionf iscontinuousatbuifandonlyif
lim
u!
b
u
f.u/Df.bu/:
Theorem8.3.5
Afunctionf iscontinuousatbuifandonlyif
lim
n!1
f.u
n
/Df.bu/
wheneverfu
n
gisasequenceinD
f
thatconvergestobu.
Theorem8.3.6
Iff iscontinuousonacompactsetT;thenf.T/iscompact.
Proof
Letfv
n
gbeaninfinitesequenceinf.T/.Foreachn,v
n
Df.u
n
/forsomeu
n
2
T. SinceT T iscompact,fu
n
ghasasubsequencefu
n
j
gsuchthatlim
j!1
u
n
j
Dbu2 T
(Theorem8.2.4). FromTheorem8.3.5,lim
j!1
f.u
n
j
/Df.bu/;thatis,lim
j!1
v
n
j
D
f.bu/.Therefore,f.T/iscompact,againbyTheorem8.2.4.
Definition8.3.7
Afunctionf isuniformlycontinuousonasubsetSofD
f
ifforeach
>0thereisaı>0suchthat
.f.u/;f.v//< whenever .u;v/<ı and
u;v2S:
VB.NET Create PDF from Word Library to convert docx, doc to PDF in
Set File Permissions. Password: Open Document. Edit Digital Signatures. Ability to get word count of PDF pages. Change Word hyperlink to PDF hyperlink and bookmark
add link to pdf file; accessible links in pdf
.NET PDF SDK - Description of All PDF Processing Control Feastures
signature; Add signature image to PDF file. PDF Hyperlink Edit. Support outline; More about PDF Hyperlink Edit ▶. PDF Metadata Edit. Support
pdf hyperlink; convert a word document to pdf with hyperlinks
Section8.3
ContinuousFunctionsonMetricSpaces
547
Theorem8.3.8
IffiscontinuousonacompactsetT;thenf isuniformlycontinuous
onT.
Proof
Iff isnotuniformlycontinuousonT,thenforsome
0
>0therearesequences
fu
n
gandfv
n
ginTsuchthat.u
n
;v
n
/<1=nand
.f.u
n
/;f.v
n
//
0
:
(8.3.6)
SinceTiscompact,fu
n
ghasasubsequencefu
n
k
gthatconvergestoalimitbuinT (Theo-
rem8.2.4).Since.u
n
k
;v
n
k
/<1=n
k
,lim
k!1
v
n
k
Dbualso.Then
lim
k!1
f.u
n
k
/D lim
k!1
f.v
n
k
/Df.bu/
(Theorem 8.3.5),whichcontradicts(8.3.6).
Definition8.3.9
Iff W.A;/!.A;/isdefinedonallofAandthereisaconstant˛
in.0;1/suchthat
.f.u/;f.v//˛.u;v/ forall .u;v/2AA;
(8.3.7)
thenf isacontractionof.A;/.
Wenotethatacontractionof.A;/isuniformlycontinuousonA.
Theorem8.3.10(Contraction MappingTheorem)
Iff isacontraction
ofacompletemetricspace.A;/;thentheequation
f.u/Du
(8.3.8)
hasauniquesolution:
Proof
Toseethat(8.3.8)cannothavemorethanonesolution,supposethatuDf.u/
andvDf.v/.Then
.u;v/D.f.u/;f.v//:
(8.3.9)
However,(8.3.7)impliesthat
.f.u/;f.v//˛.u;v/:
(8.3.10)
Since(8.3.9)and(8.3.10)implythat
.u;v/˛.u;v/
and˛<1,itfollowsthat.u;v/D0.HenceuDv.
Wewillnowshowthat(8.3.8)hasasolution.Withu
0
arbitrary,define
u
n
Df.u
n1
/; n1:
(8.3.11)
Wewillshowthatfu
n
gconverges.From(8.3.7)and(8.3.11),
.u
nC1
;u
n
/D.f.u
n
/;f.u
n1
//˛.u
n
;u
n1
/:
(8.3.12)
548 Chapter8
MetricSpaces
Theinequality
.u
nC1
;u
n
/˛
n
.u
1
;u
0
/; n0;
(8.3.13)
followsbyinductionfrom(8.3.12).Ifn>m,repeatedapplicationofthetriangleinequality
yields
.u
n
;u
m
/.u
n
;u
n1
/C.u
n1
;u
n2
/CC.u
mC1
;u
m
/;
and(8.3.13)yields
.u
n
;u
m
/.u
1
;u
0
m
.1C˛CC˛
nm1
/<
˛
m
1˛
:
Nowitfollowsthat
.u
n
;u
m
/<
.u
1
;u
0
/
1˛
˛
N
if n;m>N;
and,sincelim
N!1
˛D0,fu
n
gisaCauchysequence.SinceAiscomplete,fu
n
ghasa
limitbu.Sincef iscontinuousatbu,
f.bu/D lim
n!1
f.u
n1
/D lim
n!1
u
n
Dbu;
whereTheorem 8.3.5impliesthefirstequalityand(8.3.11)impliesthesecond.
Example8.3.2
SupposethathDh.x/iscontinuousonŒa;b,KDK.x;y/iscon-
tinuousonŒa;bŒa;b,andjK.x;y/j  M ifa  x;y  b. . Showthatifjj j <
1=M.ba/thereisauniqueuinCŒa;bsuchthat
u.x/Dh.x/C
Z
b
a
K.x;y/u.y/dy; axb:
(8.3.14)
(ThisisFredholm’sintegralequation.)
Solution
LetAbeCŒa;b,whichiscomplete.Ifu2CŒa;b,letf.u/Dv,where
v.x/Dh.x/C
Z
b
a
K.x;y/u.y/dy; axb:
Sincev2CŒa;b,f WCŒa;b!CŒa;b.Ifu
1
,u
2
2CŒa;b,then
jv
1
.x/v
2
.x/jjj
Z
b
a
jK.x;y/jju
1
.y/v
1
.y/jdy;
so
kv
1
v
2
kjjM.ba/ku
1
u
2
k:
SincejjM.ba/<1,f isacontraction.Hence,thereisauniqueuinCŒa;bsuchthat
f.u/Du.Thisusatisfies(8.3.14).
Section8.3
ContinuousFunctionsonMetricSpaces
549
8.3Exercises
1.
Supposethatf W.A;/!.B;/andD
f
DA. Showthatthefollowingstate-
mentsareequivalent.
(a)
f iscontinuousonA.
(b)
IfV isanyopensetin.B;/,thenf1.V/isopenin.A;/.
(c)
IfVisanyclosedsetin.B;/,thenf
1
.V/isclosedin.A;/.
2.
Ametricspace.A;/isconnectedifAcannotbewrittenasADA
1
[A
2
,where
A
1
andA
2
arenonemptydisjointopensets. Supposethat.A;/isconnectedand
f W.A;/!.B;/,whereD
f
DA,R
f
DB,andf iscontinuousonA.Show
that.B;/isconnected.
3.
Letf beacontinuousreal-valuedfunctiononacompactsubsetSofametricspace
.A;/.LetbetheusualmetriconR;thatis,.x;y/Djxyj.
(a)
Showthatf isboundedonS.
(b)
Let˛Dinf
u2S
f.u/andˇ Dsup
u2S
f.u/. Showthattherearepointsu
1
andu
2
inŒa;bsuchthatf.u
1
/D˛andf.u
2
/Dˇ.
4.
Letf W.A;/ / !.B;/becontinuousonasubsetU U ofA. . Let
ubeinU and
definethereal-valuedfunctiongW.A;/!Rby
g.u/D.f.u/;f.
u//; u2U:
(a)
ShowthatgiscontinuousonU.
(b)
ShowthatifU iscompact,thengisuniformlycontinuousonU.
(c)
ShowthatifU iscompact, , thenthereisabu2 2 U suchthatg.u/   g.bu/,
u2U.
5.
Supposethat.A;/,.B;/,and.C;/aremetricspaces,andlet
f W.A;/!.B;/ and gW.B;/!.C;/;
whereD
f
DA,R
f
DD
g
DB,andf andgarecontinuous.DefinehW.A;/!
.C;/byh.u/Dg.f.u//.ShowthathiscontinuousonA.
6.
Let.A;/bethesetofallboundedreal-valuedfunctionsonanonemptysetS,
with.u;v/ D D sup
s2S
ju.s/v.s/j. Lets
1
,s
2
, ..., s
k
bemembersofS, and
f.u/Dg.u.s
1
/;u.s
2
/;:::;u.s
k
//,wheregisreal-valuedandcontinuousonRk.
Showthatf isacontinuousfunctionfrom.A;/toR.
7.
Let.A;/bethesetofallboundedreal-valuedfunctionsonanonemptysetS,
with.u;v/Dsup
s2S
ju.s/v.s/j. Showthatf.u/Dinf
s2S
u.s/andg.u/ D
sup
s2S
u.s/areuniformlycontinuousfunctionsfrom.A;/toR.
8.
LetIŒa;bbethesetofallreal-valuedfunctionsthatareRiemannintegrableon
Œa;b,with.u;v/Dsup
axb
ju.x/v.x/j.Showthatf.u/D
Z
b
a
u.x/dxisa
uniformlycontinuousfunctionfromIŒa;btoR.
550
AnswerstoSelectedExercises
AnswerstoSelected
Exercises
Section1.1 pp. 910
1:1:1
(p.9)(a)
2max.a;b/
(b)
2min.a;b/
(c)
4max.a;b;c/
(d)
4min.a;b;c/
1:1:5
(p. 9)(a)
1(no);1(yes)
(b)
3(no);3(no)
(c)
p
7(yes);
p
7(yes)
(d)
2(no);3(no)
(e)
1(no);1(no)
(f)
p
7(no);
p
7(no)
Section1.2 pp. 1519
1:2:9
(p.16)(a)
2
n
=.2n/Š
(b)
23
n
=.2nC1/Š
(c)
2
n
.2n/Š=.nŠ/
2
(d)
n
n
=nŠ
1:2:10
(p. 16)(b)
no 1:2:11
(p. 16)(b)
no
1:2:20
(p. 18)
A
n
D
x
n
0
@
lnx
Xn
jD1
1
j
1
A
1:2:21
(p. 18)
f
n
.x
1
;x
2
;:::;x
n
/ D 2n1max.x
1
;x
2
;:::;x
n
/, g
n
.x
1
;x
2
;:::;x
n
/ D
2n1min.x
1
;x
2
;:::;x
n
/
Section1.3 pp. 2729
1:3:1
(p.27)(a)
Œ
1
2
;1/;.1;
1
2
/[Œ1;1/;.1;0[.
3
2
;1/;.0;
3
2
;.1;0[.
3
2
;1/;
.1;
1
2
[Œ1;1/
(b)
.3;2/[.2;3/;.1;3[Œ2;2[Œ3;1/;;;.1;1/; ;;
.1;3[Œ2;2[Œ3;1/
(c)
;;.1;1/;;;.1;1/;;;.1;1/
(d)
;;.1;1/;Œ1;1;.1;1/[.1;1/;Œ1;1;.1;1/
1:3:2
(p. 27)(a)
.0;3
(b)
Œ0;2
(c)
.1;1/[.2;1/
(d)
.1;0[.3;1/
1:3:4
(p. 27)(a)
1
4
(b)
1
6
(c)
6
(d)
1
AnswerstoSelectedExercises
551
1:3:5
(p. 27)(a)
neither;.1;2/[.3;1/;.1;1/ [.2;3/;.1;1 [.2;3/;
.1;1[Œ2;3
(b)
open;S;.1;2/;Œ1;2
(c)
closed;.3;2/[.7;8/;.1;3/[
.2;7/[.8;1/;.13[Œ2;7[Œ8;1/
(d)
closed;;;
.n;nC1/
ˇ
ˇ
nDinteger
;
.1;1/
1:3:20
(p. 28)(a)
˚
x
ˇ
ˇ
xD1=n;nD1;2;:::
;
(b)
;
(c)
,
(d)
S
1
Drationals,
S
2
Dirrationals
(e)
anysetwhosesupremumisanisolatedpointoftheset
(f)
,
(g)
the
rationals
(h)
S
1
Drationals,S
2
Dirrationals
Section2.1 pp. 4853
2:1:2
(p. 48)
D
f
DŒ2;1/[Œ3;1/,D
g
D.1;3[Œ3;7/[.7;1/,D
f˙g
D
D
fg
DŒ3;7/[.7;1/,D
f=g
D.3;4/[.4;7/[.7;1/
2:1:3
(p. 48)(a)
,
(b)
˚
x
ˇ
ˇ
x¤.2kC1/=2wherekDinteger
(c)
˚
x
ˇ
ˇ
x¤0;1
(d)
˚
x
ˇ
ˇ
x¤0
(e)
Œ1;1/
2:1:4
(p. 49)(a)
4
(b)
12
(c)
1
(d)
2
(e)
2
2:1:6
(p. 49)(a)
11
17
(b)
2
3
(c)
1
3
(d)
2
2:1:7
(p. 49)(a)
0;2
(b)
0,none
(c)
1
3
;
1
3
(d)
none,0
2:1:15
(p. 50)(a)
0
(b)
0
(c)
none
(d)
0
(e)
none
(f)
0
2:1:18
(p. 50)(a)
0
(b)
0
(c)
none
(d)
none
(e)
none
(f)
0
2:1:20
(p. 50)(a)
1
(b)
1
(c)
1
(d)
1
(e)
1
(f)
1
2:1:22
(p. 51)(a)
none
(b)
1
(c)
1
(d)
none
2:1:24
(p. 51)(a)
1
(b)
1
(c)
1
(d)
1
(e)
none
(f)
1
2:1:31
(p. 52)(a)
3
2
(b)
3
2
(c)
1
(d)
1
(e)
1
(f)
1
2
2:1:32
(p. 52)
lim
x!1
r.x/D 1ifn> manda
n
=b
m
>0;D1ifn> mand
a
n
=b
m
<0;Da
n
=b
m
ifnDm;D0ifn<m.lim
x!1
r.x/D.1/
nm
lim
x!1
r.x/
2:1:33
(p. 52)
lim
x!x
0
f.x/Dlim
x!x
0
g.x/
2:1:37
(p.52)(c)
lim
x!x
0
.fg/.x/
lim
x!x
0
f.x/lim
x!x
0
g.x/;lim
x!x
0
.f
g/.x/lim
x!x
0
f.x/
lim
x!x
0
g.x/
Section2.2 pp. 6973
2:2:3
(p. 69)(a)
fromtheright
(b)
continuous
(c)
none
(d)
continuous
(e)
none
(f)
continuous
(g)
fromtheleft
2:2:4
(p. 69)
Œ0;1/,.0;1/, Œ1;2/,.1;2/, .1;2,Œ1;2 2:2:5
(p. 69)
Œ0;1/, .0;1/,
.1;1/2:2:13
(p. 70)(b)
tanhxiscontinuousforallx,cothxforallx¤0
Documents you may be interested
Documents you may be interested