﻿

# pdfsharp c# : Add hyperlink in pdf software application cloud windows html wpf class TRENCH_REAL_ANALYSIS6-part279

Section2.2
Continuity
53
(a)
Showthat
lim
x!x
0
.f Cg/.x/
lim
x!x
0
f.x/C
lim
x!x
0
g.x/:
(b)
Showthat
lim
x!x
0
.f Cg/.x/ lim
x!x
0
f.x/C lim
x!x
0
g.x/:
(c)
Stateinequalitiesanalogoustothosein
(a)
and
(b)
for
lim
x!x
0
.f g/.x/ and
lim
x!x
0
.f g/.x/:
38.
Prove:lim
x!x
0
f.x/exists(ﬁnite)ifandonlyifforeach>0thereisaı>0
suchthatjf.x
1
/f.x
2
/j< ifx
0
ı <x
1
,x
2
<x
0
. H
INT
:Forsufﬁciency;
showthatf isboundedonsomeinterval.a;x
0
/and
lim
x!0
f.x/D
lim
x!x
0
f.x/:
ThenuseExercise2.1.36.c/:
39.
Supposethatfisboundedonaninterval.x
0
;b.UsingDeﬁnition2.1.10asaguide,
deﬁne
lim
x!x
0
C
f.x/(therightlimitsuperioroffatx
0
)andlim
x!x
0
C
f.x/(the
rightlimitinferioroff atx
0
).Thenprovethattheyexist.H
INT
:UseTheorem2.1.9:
40.
Supposethatf isboundedonaninterval.x
0
;b. Showthatlim
x!x
0
C
f.x/ D
lim
x!x
0
C
f.x/ifandonlyiflim
x!x
0
C
f.x/exists,inwhichcase
lim
x!x
0
C
f.x/D
lim
x!x
0
C
f.x/D
lim
x!x
0
C
f.x/:
41.
Supposethatfisboundedonanopenintervalcontainingx
0
.Showthatlim
x!x
0
f.x/
existsifandonlyif
lim
x!x
0
f.x/D
lim
x!x
0
C
f.x/D
lim
x!x
0
f.x/D
lim
x!x
0
C
f.x/;
inwhichcaselim
x!x
0
f.x/isthecommonvalueofthesefourexpressions.
2.2CONTINUITY
Inthissectionwestudycontinuousfunctionsofarealvariable.Wewillprovesomeimpor-
thescopeoftheelementarycalculuscourse.Theyareaccessiblenowbecauseofourbetter
understandingoftherealnumbersystem,especiallyofthosepropertiesthatstemfromthe
completenessaxiom.
Free C# example code is offered for users to edit PDF document hyperlink (url), like inserting and deleting
Add hyperlink in pdf - VB.NET PDF url edit library: insert, remove PDF links in vb.net, ASP.NET, MVC, Ajax, WinForms, WPF
Help to Insert a Hyperlink to Specified PDF Document Page
54 Chapter2
DifferentialCalculusofFunctionsofOneVariable
Thedeﬁnitionsof
f.x
0
/D
lim
x!x
0
f.x/; f.x
0
C/D
lim
x!x
0
C
f.x/; and
lim
x!x
0
f.x/
donotinvolvef.x
0
/orevenrequirethatitbedeﬁned.However,thecasewheref.x
0
/is
deﬁnedandequaltooneormoreofthesequantitiesisimportant.
Deﬁnition2.2.1
(a)
Wesaythatfiscontinuousatx
0
iffisdeﬁnedonanopeninterval.a;b/containing
x
0
andlim
x!x
0
f.x/Df.x
0
/.
(b)
Wesaythatf iscontinuousfromtheleftatx
0
iff isdeﬁnedonanopeninterval
.a;x
0
/andf.x
0
/Df.x
0
/.
(c)
Wesaythatf iscontinuousfromtherightatx
0
iff isdeﬁnedonanopeninterval
.x
0
;b/andf.x
0
C/Df.x
0
/.
Thefollowingtheoremprovidesamethodfordeterminingwhetherthesedeﬁnitionsare
satisﬁed. Theproof,whichweleavetoyou(Exercise2.2.1),restsonDeﬁnitions2.1.2,
2.1.5,and2.2.1.
Theorem2.2.2
(a)
Afunctionfiscontinuousatx
0
ifandonlyiff isdeﬁnedonanopeninterval.a;b/
containingx
0
andforeach>0thereisaı>0suchthat
jf.x/f.x
0
/j<
(2.2.1)
wheneverjxx
0
j<ı:
(b)
Afunctionf iscontinuousfromtherightatx
0
ifandonlyiff isdeﬁnedonan
intervalŒx
0
;b/andforeach>0thereisaı>0suchthat(2.2.1)holdswhenever
x
0
x<x
0
Cı:
(c)
Afunctionfiscontinuousfromtheleftatx
0
ifandonlyiffisdeﬁnedonaninterval
.a;x
0
andforeach>0
thereisaı>0suchthat(2.2.1)holdswheneverx
0
ı<xx
0
:
FromDeﬁnition2.2.1andTheorem2.2.2,f is
continuousatx
0
ifandonlyif
f.x
0
/Df.x
0
C/Df.x
0
/
or,equivalently,ifandonlyifitiscontinuousfromtherightandleftatx
0
(Exercise2.2.2).
Example2.2.1
Letf bedeﬁnedonŒ0;2by
f.x/D
x
2
;
0x<1;
xC1; 1x2
VB.NET Create PDF from Word Library to convert docx, doc to PDF in
Change Word hyperlink to PDF hyperlink and bookmark. VB.NET Demo Code for Converting Word to PDF. Add necessary references: RasterEdge.Imaging.Basic.dll.
VB.NET Create PDF from Excel Library to convert xlsx, xls to PDF
Change Excel hyperlink to PDF hyperlink and bookmark. VB.NET Demo Code for Converting Excel to PDF. Add necessary references: RasterEdge.Imaging.Basic.dll.
Section2.2
Continuity
55
(Figure2.2.1);then
f.0C/D0Df.0/;
f.1/D1¤f.1/D2;
f.1C/D2Df.1/;
f.2/D3Df.2/:
Therefore,f iscontinuousfromtherightat0and1andcontinuousfromtheleftat2,but
notat1.If0<x,x
0
<1,then
jf.x/f.x
0
/jDjx
2
x
2
0
jDjxx
0
jjxCx
0
j
2jxx
0
j< if
jxx
0
j<=2:
Hence,fiscontinuousateachx
0
in.0;1/.If1<x,x
0
<2,then
jf.x/f.x
0
/jDj.xC1/.x
0
C1/Djxx
0
j
< if
jxx
0
j<:
Hence,fiscontinousateachx
0
in.1;2/.
2
3
2
1
1
y
x
y = x + 1,  1 ≤ x ≤ 2
y = x2,  0 ≤ x < 1
Figure2.2.1
Deﬁnition2.2.3
Afunctionf iscontinuousonanopeninterval.a;b/ifitiscontinu-
f.b/Df.b/
(2.2.2)
or
f.aC/Df.a/
(2.2.3)
How to C#: Basic SDK Concept of XDoc.PDF for .NET
You may add PDF document protection functionality into your C# program. Hyperlink Edit. XDoc.PDF for .NET allows C# developers to edit hyperlink of PDF document
VB.NET PDF: Basic SDK Concept of XDoc.PDF
You may add PDF document protection functionality into your VB.NET program. Hyperlink Edit. XDoc.PDF for .NET allows VB.NET developers to edit hyperlink of PDF
convert excel to pdf with hyperlinks; convert a word document to pdf with hyperlinks
56 Chapter2
DifferentialCalculusofFunctionsofOneVariable
thenf iscontinuouson.a;borŒa;b/, , respectively. Iff iscontinuouson.a;b/and
(2.2.2)and(2.2.3)bothhold,thenfiscontinuousonŒa;b.Moregenerally,ifSisasubset
ofD
f
consistingofﬁnitelyorinﬁnitelymanydisjointintervals,thenf iscontinuousonS
iff iscontinuousoneveryintervalinS.(Henceforth,inconnectionwithfunctionsofone
variable,wheneverwesay“f iscontinuousonS”wemeanthatSisasetofthiskind.)
Example2.2.2
Letf.x/D
p
x,0x<1.Then
jf.x/f.0/jD
p
x< if 0x<
2
;
sof.0C/Df.0/.Ifx
0
>0andx0,then
jf.x/f.x
0
/jDj
p
x
p
x
0
jD
jxx
0
j
p
xC
p
x
0
jxx
0
j
p
x
0
< if jxx
0
j<
p
x
0
;
solim
x!x
0
f.x/Df.x
0
/.Hence,f iscontinuousonŒ0;1/.
Example2.2.3
Thefunction
g.x/D
1
sinx
iscontinuousonS D
S
1
nD1
.n;nC1/. However,gisnotcontinuousatanyx
0
D n
(integer),sinceitisnotdeﬁnedatsuchpoints.
Thefunctionf deﬁnedinExample2.2.1(seealsoFigure2.2.1)iscontinuousonŒ0;1/
andŒ1;2,butnotonanyopenintervalcontaining1.Thediscontinuityoff thereisofthe
simplestkind,describedinthefollowingdeﬁnition.
Deﬁnition2.2.4
Afunctionf ispiecewisecontinuousonŒa;bif
(a)
f.x
0
C/existsforallx
0
inŒa;b/;
(b)
f.x
0
/existsforallx
0
in.a;b;
(c)
f.x
0
C/Df.x
0
/Df.x
0
/forallbutﬁnitelymanypointsx
0
in.a;b/.
If
(c)
failstoholdatsomex
0
in.a;b/,f hasajumpdiscontinuityatx
0
. Also,f hasa
jumpdiscontinuityataiff.aC/¤f.a/oratbiff.b/¤f.b/.
Example2.2.4
Thefunction
f.x/D
8
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:
1; xD0;
x; 0<x<1;
2; xD1;
x; 1<x2;
1; 2<x<3;
0; xD3;
(Figure2.2.2)isthegraphofapiecewisecontinuousfunctiononŒ0;3,withjumpdiscon-
tinuitiesatx
0
D0,1,2,and3.
C# Create PDF from Word Library to convert docx, doc to PDF in C#.
Change Word hyperlink to PDF hyperlink and bookmark. C#.NET Sample Code: Convert Word to PDF in C#.NET Project. Add necessary references:
.NET PDF Document Viewing, Annotation, Conversion & Processing
Extract hyperlink inside PDF. PDF Write. Insert text, text box into PDF. Edit, delete text from PDF. Insert images into PDF. Edit, remove images from PDF. Add,
Section2.2
Continuity
57
2
3
2
3
1
1
−1
y
x
Figure2.2.2
notalldiscontinuitiesareofthiskind.
Example2.2.5
Thefunction
f.x/D
8
ˆ
<
ˆ
:
sin
1
x
; x¤0;
0;
xD0;
iscontinuousatallx
0
exceptx
0
D0.Asxapproaches0fromeitherside,f.x/oscillates
between1and1withever-increasingfrequency, soneitherf.0C/norf.0/ exists.
Therefore,thediscontinuityoff at0isnotajumpdiscontinuity,andif>0,thenf f is
notpiecewisecontinuousonanyintervaloftheformŒ;0,Œ;,orŒ0;.
Theorems2.1.4and2.2.2implythenexttheorem(Exercise2.2.18).
Theorem2.2.5
Iff andgarecontinuousonasetS;thensoarefCg;f g;and
0
inSsuchthatg.x
0
/¤0:
Example2.2.6
Sincetheconstantfunctionsandthefunctionf.x/Dxarecontinu-
ousforallx,successiveapplicationsofthevariouspartsofTheorem2.2.5implythatthe
function
r.x/D
9x
2
xC1
VB.NET Create PDF from PowerPoint Library to convert pptx, ppt to
Export PowerPoint hyperlink to PDF. VB.NET Demo Code for Converting PowerPoint to PDF. Add necessary references: RasterEdge.Imaging.Basic.dll.
C# Create PDF from PowerPoint Library to convert pptx, ppt to PDF
Export PowerPoint hyperlink to PDF in .NET console application. C#.NET Demo Code: Convert PowerPoint to PDF in C#.NET Application. Add necessary references:
58 Chapter2
DifferentialCalculusofFunctionsofOneVariable
iscontinuousforallxexceptx D1(seeExample2.1.7). Moregenerally,bystarting
fromTheorem2.2.5andusing
induction,itcanbeshownthatiff
1
,f
2
,...,f
n
arecontinuousonasetS,thensoare
f
1
Cf
2
CCf
n
andf
1
f
2
f
n
.Therefore,anyrationalfunction
r.x/D
a
0
Ca
1
xCCa
n
xn
b
0
Cb
1
xCCb
m
xm
.b
m
¤0/
iscontinuousforallvaluesofxexceptthoseforwhichitsdenominatorvanishes.
RemovableDiscontinuities
0
anddiscontinuous(perhapsevenunde-
ﬁned)atx
0
.Wesaythatf hasaatx
0
iflim
x!x
0
f.x/exists.Inthiscase,thefunction
g.x/D
8
<
:
f.x/
ifx2D
f
andx¤x
0
;
lim
x!x
0
f.x/ ifxDx
0
;
iscontinuousatx
0
.
Example2.2.7
Thefunction
f.x/Dxsin
1
x
isnotdeﬁnedatx
0
D0,andthereforecertainlynotcontinuousthere,butlim
x!0
f.x/D0
(Example2.1.6).Therefore,f hasaremovablediscontinuityat0.
Thefunction
f
1
.x/Dsin
1
x
isundeﬁnedat0anditsdiscontinuitythereisnotremovable,sincelim
x!0
f
1
.x/doesnot
exist(Example2.2.5).
Composite Functions
Wehaveseenthattheinvestigationoflimitsandcontinuitycanbesimpliﬁedbyregardinga
functions.Anotheroperationusefulinthisconnectioniscompositionoffunctions;thatis,
substitutionofonefunctionintoanother.
Deﬁnition2.2.6
Supposethatf andgarefunctionswithdomainsD
f
andD
g
. If
D
g
hasanonemptysubsetT suchthatg.x/2D
f
wheneverx 2T,thenthecomposite
functionfıgisdeﬁnedonT by
.f ıg/.x/Df.g.x//:
Section2.2
Continuity
59
Example2.2.8
If
f.x/Dlogx and g.x/D
1
1x2
;
then
D
f
D.0;1/ and
D
g
D
˚
x
ˇ
ˇ
x¤˙1
:
Sinceg.x/>0ifx2T D.1;1/,thecompositefunctionfıgisdeﬁnedon.1;1/by
.f ıg/.x/Dlog
1
1x2
:
Weleaveittoyoutoverifythatgıf isdeﬁnedon.0;1=e/[.1=e;e/[.e;1/by
.gıf/.x/D
1
1.logx/2
:
Thenexttheoremsaysthatthecompositionofcontinuousfunctionsiscontinuous.
Theorem2.2.7
Supposethatgiscontinuousatx
0
;g.x
0
/isaninteriorpointofD
f
;
andf iscontinuousatg.x
0
/:Thenfıgiscontinuousatx
0
:
Proof
Supposethat>0.Sinceg.x
0
/isaninteriorpointofD
f
andf iscontinuous
atg.x
0
/,thereisaı
1
>0suchthatf.t/isdeﬁnedand
jf.t/f.g.x
0
//j< if jtg.x
0
/j<ı
1
:
(2.2.4)
Sincegiscontinuousatx
0
,thereisaı>0suchthatg.x/isdeﬁnedand
jg.x/g.x
0
/j<ı
1
if jxx
0
j<ı:
(2.2.5)
Now(2.2.4)and(2.2.5)implythat
jf.g.x//f.g.x
0
//j< if jxx
0
j<ı:
Therefore,f ıgiscontinuousatx
0
.
SeeExercise2.2.22forarelatedresultconcerninglimits.
Example2.2.9
InExamples2.2.2and2.2.6wesawthatthefunction
f.x/D
p
x
iscontinuousforx>0,andthefunction
g.x/D
9x
2
xC1
iscontinuousforx ¤1. Sinceg.x/ / > 0ifx < 3or1< x < 3,Theorem2.2.7
impliesthatthefunction
.f ıg/.x/D
s
9x2
xC1
iscontinuouson.1;3/[.1;3/.Itisalsocontinuousfromtheleftat3and3.
60 Chapter2
DifferentialCalculusofFunctionsofOneVariable
BoundedFunctions
Afunctionf isboundedbelowonasetSifthereisarealnumbermsuchthat
f.x/mforallx2S:
Inthiscase,theset
V D
˚
f.x/
ˇ
ˇ
x2S
hasaninﬁmum˛,andwewrite
˛D inf
x2S
f.x/:
Ifthereisapointx
1
inSsuchthatf.x
1
/D˛,wesaythat˛istheminimumoff onS,
andwrite
˛Dmin
x2S
f.x/:
Similarly,f isboundedaboveonSifthereisarealnumberMsuchthatf.x/M for
allxinS.Inthiscase,V hasasupremumˇ,andwewrite
ˇDsup
x2S
f.x/:
Ifthereisapointx
2
inSsuchthatf.x
2
/Dˇ,wesaythatˇisthemaximumoff onS,
andwrite
ˇDmax
x2S
f.x/:
Iff isboundedaboveandbelowonasetS,wesaythatf isboundedonS.
Figure2.2.3illustratesthegeometric meaningofthesedeﬁnitionsfora functionf
boundedonanintervalS D D Œa;b. Thegraphoff lies s inthestripboundedbythe
linesy D D M andy D m, , whereM isany y upperboundandmisany lowerbound
forf onŒa;b. Thenarroweststripcontainingthegraphistheoneboundedaboveby
yDˇDsup
axb
f.x/andbelowbyyD˛Dinf
axb
f.x/.
y
x
y = α
y = β
y = m
y = M
Figure2.2.3