98
Ifcurrent nodeis anareap387
,basep137
,basefontp1107
,bgsoundp1106
,brp241
,colp403
,embedp315
,framep1115
,
hrp188
,imgp280
,inputp434
,keygenp494
,linkp138
,metap143
,paramp324
,sourcep278
,trackp330
orwbrp242
element, then continue on to the next child node at this point.
Ifcurrent nodeis aprep190
,textareap489
, orlistingp1106
element, and the first child node of the element, if
any, is aText
node whose character data has as its first character a U+000A LINE FEED (LF) character, then
append a U+000A LINE FEED (LF) character.
Append the value of running theHTML fragment serialisation algorithmp1050
on thecurrent nodeelement (thus
recursing into this algorithm for that element), followed by a U+003C LESS-THAN SIGN character (<), a U+002F
SOLIDUS character (/),tagnameagain, and finally a U+003E GREATER-THAN SIGN character (>).
↪
Ifcurrent nodeis aTextnode
If the parent ofcurrent nodeis astylep152
,scriptp564
,xmpp1106
,iframep308
,noembedp1106
,noframesp1106
, or
plaintextp1106
element, or if the parent ofcurrent nodeis anoscriptp577
element andscripting is enabledp827
for the node, then append the value ofcurrent node'sdataIDL attribute literally.
Otherwise, append the value ofcurrent node'sdataIDL attribute,escaped as described belowp1051
.
↪
Ifcurrent nodeis aComment
Append the literal string "<!--" (U+003C LESS-THAN SIGN, U+0021 EXCLAMATION MARK, U+002D HYPHEN-
MINUS, U+002D HYPHEN-MINUS), followed by the value ofcurrent node'sdataIDL attribute, followed by the
literal string "-->" (U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS, U+003E GREATER-THAN SIGN).
↪
Ifcurrent nodeis aProcessingInstruction
Append the literal string "<?" (U+003C LESS-THAN SIGN, U+003F QUESTION MARK), followed by the value of
current node'stargetIDL attribute, followed by a single U+0020 SPACE character, followed by the value of
current node'sdataIDL attribute, followed by a single U+003E GREATER-THAN SIGN character (>).
↪
Ifcurrent nodeis aDocumentType
Append the literal string "<!DOCTYPE" (U+003C LESS-THAN SIGN, U+0021 EXCLAMATION MARK, U+0044
LATIN CAPITAL LETTER D, U+004F LATIN CAPITAL LETTER O, U+0043 LATIN CAPITAL LETTER C, U+0054
LATIN CAPITAL LETTER T, U+0059 LATIN CAPITAL LETTER Y, U+0050 LATIN CAPITAL LETTER P, U+0045
LATIN CAPITAL LETTER E), followed by a space (U+0020 SPACE), followed by the value ofcurrent node'sname
IDL attribute, followed by the literal string ">" (U+003E GREATER-THAN SIGN).
4. The result of the algorithm is the strings.
Escaping a string(for the purposes of the algorithm above) consists of running the following steps:
1. Replace any occurrence of the "&" character by the string "&".
2. Replace any occurrences of the U+00A0 NO-BREAK SPACE character by the string " ".
It is possible that the output of this algorithm, if parsed with anHTML parserp962
, will not return the original tree
structure.
⚠Warning!
For instance, if atextareap489
element to which aCommentnode has been appended is serialised and the output is then reparsed, the
comment will end up being displayed in the text field. Similarly, if, as a result of DOM manipulation, an element contains a comment that
contains the literal string "-->", then when the result of serialising the element is parsed, the comment will be truncated at that point and
the rest of the comment will be interpreted as markup. More examples would be making ascriptp564
element contain aText
node
with the text string "</script>", or having app186
element that contains aulp196
element (as theulp196
element'sstart tagp953
would
imply the end tag for thepp186
).
This can enable cross-site scripting attacks. An example of this would be a page that lets the user enter some font family names that are
then inserted into a CSSstylep152
block via the DOM and which then uses theinnerHTML
IDL attribute to get the HTML serialisation
of thatstylep152
element: if the user enters "</style><script>attack</script>" as a font family name,innerHTML
will return
markup that, if parsed in a different context, would contain ascriptp564
node, even though noscriptp564
node existed in the original
DOM.
Example
1051
101
3. If the algorithm was invoked in theattribute mode, replace any occurrences of the """ character by the string """.
4. If the algorithm wasnotinvoked in theattribute mode, replace any occurrences of the "<" character by the string "<", and any
occurrences of the ">" character by the string ">".
12.4 Parsing HTML fragments
The following steps form theHTML fragment parsing algorithm. The algorithm takes as input anElement
node, referred to as thecontext
element, which gives the context for the parser, as well asinput, a string to parse, and returns a list of zero or more nodes.
1. Create a newDocumentp103
node, and mark it as being anHTML document
.
2. If thenode document
of thecontextp1052
element is inquirks mode
, then let theDocumentp103
be inquirks mode
. Otherwise, thenode
document
of thecontextp1052
element is inlimited-quirks mode
, then let theDocumentp103
be inlimited-quirks mode
. Otherwise, leave
theDocumentp103
inno-quirks mode
.
3. Create a newHTML parserp962
, and associate it with the just createdDocumentp103
node.
4. Set the state of theHTML parserp962
'stokenizationp975
stage as follows:
↪
If it is atitlep136
ortextareap489
element
Switch the tokenizer to theRCDATA statep976
.
↪
If it is astylep152
,xmpp1106
,iframep308
,noembedp1106
, ornoframesp1106
element
Switch the tokenizer to theRAWTEXT statep976
.
↪
If it is ascriptp564
element
Switch the tokenizer to thescript data statep977
.
↪
If it is anoscriptp577
element
If thescripting flagp975
is enabled, switch the tokenizer to theRAWTEXT statep976
. Otherwise, leave the tokenizer in thedata
statep976
.
↪
If it is aplaintextp1106
element
Switch the tokenizer to thePLAINTEXT statep977
.
↪
Otherwise
Leave the tokenizer in thedata statep976
.
5. Letrootbe a newhtmlp134
element with no attributes.
6. Append the elementrootto theDocumentp103
node created above.
7. Set up the parser'sstack of open elementsp972
so that it contains just the single elementroot.
8. If thecontextp1052
element is atemplatep579
element, push "in templatep1036
" onto thestack of template insertion modesp971
so that it is
the newcurrent template insertion modep971
.
9. Create a start tag token whose name is the local name ofcontextp1052
and whose attributes are the attributes ofcontextp1052
.
Let this start tag token be the start tag token of thecontextp1052
node, e.g. for the purposes of determining if it is anHTML integration
pointp1003
.
Parts markedfragment casein algorithms in the parser section are parts that only occur if the parser was created for the purposes of this
algorithm. The algorithms have been annotated with such markings for informational purposes only; such markings have no normative
weight. If it is possible for a condition described as afragment casep1052
to occur even when the parser wasn't created for the purposes of
handling this algorithm, then that is an error in the specification.
Note
For performance reasons, an implementation that does not report errors and that uses the actual state machine described in
this specification directly could use the PLAINTEXT state instead of the RAWTEXT and script data states where those are
mentioned in the list above. Except for rules regarding parse errors, they are equivalent, since there is noappropriate end tag
tokenp976
in the fragment case, yet they involve far fewer state transitions.
Note
1052
545
10. Reset the parser's insertion mode appropriatelyp971
.
11. Set the parser'sformelement pointerp975
to the nearest node to thecontextp1052
element that is aformp429
element (going straight up
the ancestor chain, and including the element itself, if it is aformp429
element), if any. (If there is no suchformp429
element, theform
element pointerp975
keeps its initial value, null.)
12. Place theinputinto theinput streamp970
for theHTML parserp962
just created. The encodingconfidencep965
isirrelevant.
13. Start the parser and let it run until it has consumed all the characters just inserted into the input stream.
14. Return the child nodes ofroot, intree order
.
12.5Named character references
This table lists the character reference names that are supported by HTML, and the code points to which they refer. It is referenced by the previous
sections.
Name
Character(s)
Glyph
Aacute;
U+000C1
Á
Aacute
U+000C1
Á
aacute;
U+000E1
á
aacute
U+000E1
á
Abreve;
U+00102
Ă
abreve;
U+00103
ă
ac;
U+0223E
∾
acd;
U+0223F
∿
acE;
U+0223E U+00333
∾̳
Acirc;
U+000C2
Â
Acirc
U+000C2
Â
acirc;
U+000E2
â
acirc
U+000E2
â
acute;
U+000B4
´
acute
U+000B4
´
Acy;
U+00410
А
acy;
U+00430
а
AElig;
U+000C6
Æ
AElig
U+000C6
Æ
aelig;
U+000E6
æ
aelig
U+000E6
æ
af;
U+02061
Afr;
U+1D504
㔄
afr;
U+1D51E
㔞
Agrave;
U+000C0
À
Agrave
U+000C0
À
agrave;
U+000E0
à
agrave
U+000E0
à
alefsym;
U+02135
ℵ
aleph;
U+02135
ℵ
Alpha;
U+00391
Α
alpha;
U+003B1
α
Amacr;
U+00100
Ā
amacr;
U+00101
ā
amalg;
U+02A3F
⨿
AMP;
U+00026
&
AMP
U+00026
&
amp;
U+00026
&
amp
U+00026
&
And;
U+02A53
⩓
and;
U+02227
∧
andand;
U+02A55
⩕
andd;
U+02A5C
⩜
andslope;
U+02A58
⩘
andv;
U+02A5A
⩚
ang;
U+02220
∠
ange;
U+029A4
⦤
angle;
U+02220
∠
angmsd;
U+02221
∡
angmsdaa;
U+029A8
⦨
angmsdab;
U+029A9
⦩
angmsdac;
U+029AA
⦪
angmsdad;
U+029AB
⦫
angmsdae;
U+029AC
⦬
angmsdaf;
U+029AD
⦭
angmsdag;
U+029AE
⦮
angmsdah;
U+029AF
⦯
Name
Character(s)
Glyph
angrt;
U+0221F
∟
angrtvb;
U+022BE
⊾
angrtvbd;
U+0299D
⦝
angsph;
U+02222
∢
angst;
U+000C5
Å
angzarr;
U+0237C
⍼
Aogon;
U+00104
Ą
aogon;
U+00105
ą
Aopf;
U+1D538
㔸
aopf;
U+1D552
㕒
ap;
U+02248
≈
apacir;
U+02A6F
⩯
apE;
U+02A70
⩰
ape;
U+0224A
≊
apid;
U+0224B
≋
apos;
U+00027
'
ApplyFunction;
U+02061
approx;
U+02248
≈
approxeq;
U+0224A
≊
Aring;
U+000C5
Å
Aring
U+000C5
Å
aring;
U+000E5
å
aring
U+000E5
å
Ascr;
U+1D49C
㖜
ascr;
U+1D4B6
㖶
Assign;
U+02254
≔
ast;
U+0002A
*
asymp;
U+02248
≈
asympeq;
U+0224D
≍
Atilde;
U+000C3
Ã
Atilde
U+000C3
Ã
atilde;
U+000E3
ã
atilde
U+000E3
ã
Auml;
U+000C4
Ä
Auml
U+000C4
Ä
auml;
U+000E4
ä
auml
U+000E4
ä
awconint;
U+02233
∳
awint;
U+02A11
⨑
backcong;
U+0224C
≌
backepsilon;
U+003F6
϶
backprime;
U+02035
‵
backsim;
U+0223D
∽
backsimeq;
U+022CD
⋍
Backslash;
U+02216
∖
Barv;
U+02AE7
⫧
barvee;
U+022BD
⊽
Barwed;
U+02306
⌆
barwed;
U+02305
⌅
barwedge;
U+02305
⌅
bbrk;
U+023B5
⎵
bbrktbrk;
U+023B6
⎶
bcong;
U+0224C
≌
Bcy;
U+00411
Б
bcy;
U+00431
б
bdquo;
U+0201E
„
becaus;
U+02235
∵
Name
Character(s)
Glyph
Because;
U+02235
∵
because;
U+02235
∵
bemptyv;
U+029B0
⦰
bepsi;
U+003F6
϶
bernou;
U+0212C
ℬ
Bernoullis;
U+0212C
ℬ
Beta;
U+00392
Β
beta;
U+003B2
β
beth;
U+02136
ℶ
between;
U+0226C
≬
Bfr;
U+1D505
㔅
bfr;
U+1D51F
㔟
bigcap;
U+022C2
⋂
bigcirc;
U+025EF
◯
bigcup;
U+022C3
⋃
bigodot;
U+02A00
⨀
bigoplus;
U+02A01
⨁
bigotimes;
U+02A02
⨂
bigsqcup;
U+02A06
⨆
bigstar;
U+02605
★
bigtriangledown;
U+025BD
▽
bigtriangleup;
U+025B3
△
biguplus;
U+02A04
⨄
bigvee;
U+022C1
⋁
bigwedge;
U+022C0
⋀
bkarow;
U+0290D
⤍
blacklozenge;
U+029EB
⧫
blacksquare;
U+025AA
▪
blacktriangle;
U+025B4
▴
blacktriangledown;
U+025BE
▾
blacktriangleleft;
U+025C2
◂
blacktriangleright;
U+025B8
▸
blank;
U+02423
␣
blk12;
U+02592
▒
blk14;
U+02591
░
blk34;
U+02593
▓
block;
U+02588
█
bne;
U+0003D U+020E5
=⃥
bnequiv;
U+02261 U+020E5
≡⃥
bNot;
U+02AED
⫭
bnot;
U+02310
⌐
Bopf;
U+1D539
㔹
bopf;
U+1D553
㕓
bot;
U+022A5
⊥
bottom;
U+022A5
⊥
bowtie;
U+022C8
⋈
boxbox;
U+029C9
⧉
boxDL;
U+02557
╗
boxDl;
U+02556
╖
boxdL;
U+02555
╕
boxdl;
U+02510
┐
boxDR;
U+02554
╔
boxDr;
U+02553
╓
boxdR;
U+02552
╒
boxdr;
U+0250C
┌
boxH;
U+02550
═
boxh;
U+02500
─
The parser will reference thecontextp1052
element as part of that algorithm.
Note
1053
775
Name
Character(s)
Glyph
boxHD;
U+02566
╦
boxHd;
U+02564
╤
boxhD;
U+02565
╥
boxhd;
U+0252C
┬
boxHU;
U+02569
╩
boxHu;
U+02567
╧
boxhU;
U+02568
╨
boxhu;
U+02534
┴
boxminus;
U+0229F
⊟
boxplus;
U+0229E
⊞
boxtimes;
U+022A0
⊠
boxUL;
U+0255D
╝
boxUl;
U+0255C
╜
boxuL;
U+0255B
╛
boxul;
U+02518
┘
boxUR;
U+0255A
╚
boxUr;
U+02559
╙
boxuR;
U+02558
╘
boxur;
U+02514
└
boxV;
U+02551
║
boxv;
U+02502
│
boxVH;
U+0256C
╬
boxVh;
U+0256B
╫
boxvH;
U+0256A
╪
boxvh;
U+0253C
┼
boxVL;
U+02563
╣
boxVl;
U+02562
╢
boxvL;
U+02561
╡
boxvl;
U+02524
┤
boxVR;
U+02560
╠
boxVr;
U+0255F
╟
boxvR;
U+0255E
╞
boxvr;
U+0251C
├
bprime;
U+02035
‵
Breve;
U+002D8
˘
breve;
U+002D8
˘
brvbar;
U+000A6
¦
brvbar
U+000A6
¦
Bscr;
U+0212C
ℬ
bscr;
U+1D4B7
㖷
bsemi;
U+0204F
⁏
bsim;
U+0223D
∽
bsime;
U+022CD
⋍
bsol;
U+0005C
\
bsolb;
U+029C5
⧅
bsolhsub;
U+027C8
⟈
bull;
U+02022
•
bullet;
U+02022
•
bump;
U+0224E
≎
bumpE;
U+02AAE
⪮
bumpe;
U+0224F
≏
Bumpeq;
U+0224E
≎
bumpeq;
U+0224F
≏
Cacute;
U+00106
Ć
cacute;
U+00107
ć
Cap;
U+022D2
⋒
cap;
U+02229
∩
capand;
U+02A44
⩄
capbrcup;
U+02A49
⩉
capcap;
U+02A4B
⩋
capcup;
U+02A47
⩇
capdot;
U+02A40
⩀
CapitalDifferentialD;
U+02145
ⅅ
caps;
U+02229 U+0FE00
∩︀
caret;
U+02041
⁁
caron;
U+002C7
ˇ
Cayleys;
U+0212D
ℭ
ccaps;
U+02A4D
⩍
Ccaron;
U+0010C
Č
ccaron;
U+0010D
č
Ccedil;
U+000C7
Ç
Ccedil
U+000C7
Ç
ccedil;
U+000E7
ç
ccedil
U+000E7
ç
Ccirc;
U+00108
Ĉ
ccirc;
U+00109
ĉ
Cconint;
U+02230
∰
ccups;
U+02A4C
⩌
ccupssm;
U+02A50
⩐
Cdot;
U+0010A
Ċ
cdot;
U+0010B
ċ
cedil;
U+000B8
¸
cedil
U+000B8
¸
Cedilla;
U+000B8
¸
cemptyv;
U+029B2
⦲
Name
Character(s)
Glyph
cent;
U+000A2
¢
cent
U+000A2
¢
CenterDot;
U+000B7
·
centerdot;
U+000B7
·
Cfr;
U+0212D
ℭ
cfr;
U+1D520
㔠
CHcy;
U+00427
Ч
chcy;
U+00447
ч
check;
U+02713
✓
checkmark;
U+02713
✓
Chi;
U+003A7
Χ
chi;
U+003C7
χ
cir;
U+025CB
○
circ;
U+002C6
ˆ
circeq;
U+02257
≗
circlearrowleft;
U+021BA
↺
circlearrowright;
U+021BB
↻
circledast;
U+0229B
⊛
circledcirc;
U+0229A
⊚
circleddash;
U+0229D
⊝
CircleDot;
U+02299
⊙
circledR;
U+000AE
®
circledS;
U+024C8
Ⓢ
CircleMinus;
U+02296
⊖
CirclePlus;
U+02295
⊕
CircleTimes;
U+02297
⊗
cirE;
U+029C3
⧃
cire;
U+02257
≗
cirfnint;
U+02A10
⨐
cirmid;
U+02AEF
⫯
cirscir;
U+029C2
⧂
ClockwiseContourIntegral;
U+02232
∲
CloseCurlyDoubleQuote;
U+0201D
”
CloseCurlyQuote;
U+02019
’
clubs;
U+02663
♣
clubsuit;
U+02663
♣
Colon;
U+02237
∷
colon;
U+0003A
:
Colone;
U+02A74
⩴
colone;
U+02254
≔
coloneq;
U+02254
≔
comma;
U+0002C
,
commat;
U+00040
@
comp;
U+02201
∁
compfn;
U+02218
∘
complement;
U+02201
∁
complexes;
U+02102
ℂ
cong;
U+02245
≅
congdot;
U+02A6D
⩭
Congruent;
U+02261
≡
Conint;
U+0222F
∯
conint;
U+0222E
∮
ContourIntegral;
U+0222E
∮
Copf;
U+02102
ℂ
copf;
U+1D554
㕔
coprod;
U+02210
∐
Coproduct;
U+02210
∐
COPY;
U+000A9
©
COPY
U+000A9
©
copy;
U+000A9
©
copy
U+000A9
©
copysr;
U+02117
℗
CounterClockwiseContourIntegral;
U+02233
∳
crarr;
U+021B5
↵
Cross;
U+02A2F
⨯
cross;
U+02717
✗
Cscr;
U+1D49E
㖞
cscr;
U+1D4B8
㖸
csub;
U+02ACF
⫏
csube;
U+02AD1
⫑
csup;
U+02AD0
⫐
csupe;
U+02AD2
⫒
ctdot;
U+022EF
⋯
cudarrl;
U+02938
⤸
cudarrr;
U+02935
⤵
cuepr;
U+022DE
⋞
cuesc;
U+022DF
⋟
cularr;
U+021B6
↶
cularrp;
U+0293D
⤽
Cup;
U+022D3
⋓
cup;
U+0222A
∪
cupbrcap;
U+02A48
⩈
CupCap;
U+0224D
≍
cupcap;
U+02A46
⩆
cupcup;
U+02A4A
⩊
Name
Character(s)
Glyph
cupdot;
U+0228D
⊍
cupor;
U+02A45
⩅
cups;
U+0222A U+0FE00
∪︀
curarr;
U+021B7
↷
curarrm;
U+0293C
⤼
curlyeqprec;
U+022DE
⋞
curlyeqsucc;
U+022DF
⋟
curlyvee;
U+022CE
⋎
curlywedge;
U+022CF
⋏
curren;
U+000A4
¤
curren
U+000A4
¤
curvearrowleft;
U+021B6
↶
curvearrowright;
U+021B7
↷
cuvee;
U+022CE
⋎
cuwed;
U+022CF
⋏
cwconint;
U+02232
∲
cwint;
U+02231
∱
cylcty;
U+0232D
⌭
Dagger;
U+02021
‡
dagger;
U+02020
†
daleth;
U+02138
ℸ
Darr;
U+021A1
↡
dArr;
U+021D3
⇓
darr;
U+02193
↓
dash;
U+02010
‐
Dashv;
U+02AE4
⫤
dashv;
U+022A3
⊣
dbkarow;
U+0290F
⤏
dblac;
U+002DD
˝
Dcaron;
U+0010E
Ď
dcaron;
U+0010F
ď
Dcy;
U+00414
Д
dcy;
U+00434
д
DD;
U+02145
ⅅ
dd;
U+02146
ⅆ
ddagger;
U+02021
‡
ddarr;
U+021CA
⇊
DDotrahd;
U+02911
⤑
ddotseq;
U+02A77
⩷
deg;
U+000B0
°
deg
U+000B0
°
Del;
U+02207
∇
Delta;
U+00394
Δ
delta;
U+003B4
δ
demptyv;
U+029B1
⦱
dfisht;
U+0297F
⥿
Dfr;
U+1D507
㔇
dfr;
U+1D521
㔡
dHar;
U+02965
⥥
dharl;
U+021C3
⇃
dharr;
U+021C2
⇂
DiacriticalAcute;
U+000B4
´
DiacriticalDot;
U+002D9
˙
DiacriticalDoubleAcute;
U+002DD
˝
DiacriticalGrave;
U+00060
`
DiacriticalTilde;
U+002DC
˜
diam;
U+022C4
⋄
Diamond;
U+022C4
⋄
diamond;
U+022C4
⋄
diamondsuit;
U+02666
♦
diams;
U+02666
♦
die;
U+000A8
¨
DifferentialD;
U+02146
ⅆ
digamma;
U+003DD
ϝ
disin;
U+022F2
⋲
div;
U+000F7
÷
divide;
U+000F7
÷
divide
U+000F7
÷
divideontimes;
U+022C7
⋇
divonx;
U+022C7
⋇
DJcy;
U+00402
Ђ
djcy;
U+00452
ђ
dlcorn;
U+0231E
⌞
dlcrop;
U+0230D
⌍
dollar;
U+00024
$
Dopf;
U+1D53B
㔻
dopf;
U+1D555
㕕
Dot;
U+000A8
¨
dot;
U+002D9
˙
DotDot;
U+020DC
◌⃜
doteq;
U+02250
≐
doteqdot;
U+02251
≑
DotEqual;
U+02250
≐
dotminus;
U+02238
∸
dotplus;
U+02214
∔
1054
771
Name
Character(s)
Glyph
dotsquare;
U+022A1
⊡
doublebarwedge;
U+02306
⌆
DoubleContourIntegral;
U+0222F
∯
DoubleDot;
U+000A8
¨
DoubleDownArrow;
U+021D3
⇓
DoubleLeftArrow;
U+021D0
⇐
DoubleLeftRightArrow;
U+021D4
⇔
DoubleLeftTee;
U+02AE4
⫤
DoubleLongLeftArrow;
U+027F8
⟸
DoubleLongLeftRightArrow;
U+027FA
⟺
DoubleLongRightArrow;
U+027F9
⟹
DoubleRightArrow;
U+021D2
⇒
DoubleRightTee;
U+022A8
⊨
DoubleUpArrow;
U+021D1
⇑
DoubleUpDownArrow;
U+021D5
⇕
DoubleVerticalBar;
U+02225
∥
DownArrow;
U+02193
↓
Downarrow;
U+021D3
⇓
downarrow;
U+02193
↓
DownArrowBar;
U+02913
⤓
DownArrowUpArrow;
U+021F5
⇵
DownBreve;
U+00311
◌̑
downdownarrows;
U+021CA
⇊
downharpoonleft;
U+021C3
⇃
downharpoonright;
U+021C2
⇂
DownLeftRightVector;
U+02950
⥐
DownLeftTeeVector;
U+0295E
⥞
DownLeftVector;
U+021BD
↽
DownLeftVectorBar;
U+02956
⥖
DownRightTeeVector;
U+0295F
⥟
DownRightVector;
U+021C1
⇁
DownRightVectorBar;
U+02957
⥗
DownTee;
U+022A4
⊤
DownTeeArrow;
U+021A7
↧
drbkarow;
U+02910
⤐
drcorn;
U+0231F
⌟
drcrop;
U+0230C
⌌
Dscr;
U+1D49F
㖟
dscr;
U+1D4B9
㖹
DScy;
U+00405
Ѕ
dscy;
U+00455
ѕ
dsol;
U+029F6
⧶
Dstrok;
U+00110
Đ
dstrok;
U+00111
đ
dtdot;
U+022F1
⋱
dtri;
U+025BF
▿
dtrif;
U+025BE
▾
duarr;
U+021F5
⇵
duhar;
U+0296F
⥯
dwangle;
U+029A6
⦦
DZcy;
U+0040F
Џ
dzcy;
U+0045F
џ
dzigrarr;
U+027FF
⟿
Eacute;
U+000C9
É
Eacute
U+000C9
É
eacute;
U+000E9
é
eacute
U+000E9
é
easter;
U+02A6E
⩮
Ecaron;
U+0011A
Ě
ecaron;
U+0011B
ě
ecir;
U+02256
≖
Ecirc;
U+000CA
Ê
Ecirc
U+000CA
Ê
ecirc;
U+000EA
ê
ecirc
U+000EA
ê
ecolon;
U+02255
≕
Ecy;
U+0042D
Э
ecy;
U+0044D
э
eDDot;
U+02A77
⩷
Edot;
U+00116
Ė
eDot;
U+02251
≑
edot;
U+00117
ė
ee;
U+02147
ⅇ
efDot;
U+02252
≒
Efr;
U+1D508
㔈
efr;
U+1D522
㔢
eg;
U+02A9A
⪚
Egrave;
U+000C8
È
Egrave
U+000C8
È
egrave;
U+000E8
è
egrave
U+000E8
è
egs;
U+02A96
⪖
egsdot;
U+02A98
⪘
el;
U+02A99
⪙
Element;
U+02208
∈
Name
Character(s)
Glyph
elinters;
U+023E7
⏧
ell;
U+02113
ℓ
els;
U+02A95
⪕
elsdot;
U+02A97
⪗
Emacr;
U+00112
Ē
emacr;
U+00113
ē
empty;
U+02205
∅
emptyset;
U+02205
∅
EmptySmallSquare;
U+025FB
◻
emptyv;
U+02205
∅
EmptyVerySmallSquare;
U+025AB
▫
emsp;
U+02003
emsp13;
U+02004
emsp14;
U+02005
ENG;
U+0014A
Ŋ
eng;
U+0014B
ŋ
ensp;
U+02002
Eogon;
U+00118
Ę
eogon;
U+00119
ę
Eopf;
U+1D53C
㔼
eopf;
U+1D556
㕖
epar;
U+022D5
⋕
eparsl;
U+029E3
⧣
eplus;
U+02A71
⩱
epsi;
U+003B5
ε
Epsilon;
U+00395
Ε
epsilon;
U+003B5
ε
epsiv;
U+003F5
ϵ
eqcirc;
U+02256
≖
eqcolon;
U+02255
≕
eqsim;
U+02242
≂
eqslantgtr;
U+02A96
⪖
eqslantless;
U+02A95
⪕
Equal;
U+02A75
⩵
equals;
U+0003D
=
EqualTilde;
U+02242
≂
equest;
U+0225F
≟
Equilibrium;
U+021CC
⇌
equiv;
U+02261
≡
equivDD;
U+02A78
⩸
eqvparsl;
U+029E5
⧥
erarr;
U+02971
⥱
erDot;
U+02253
≓
Escr;
U+02130
ℰ
escr;
U+0212F
ℯ
esdot;
U+02250
≐
Esim;
U+02A73
⩳
esim;
U+02242
≂
Eta;
U+00397
Η
eta;
U+003B7
η
ETH;
U+000D0
Ð
ETH
U+000D0
Ð
eth;
U+000F0
ð
eth
U+000F0
ð
Euml;
U+000CB
Ë
Euml
U+000CB
Ë
euml;
U+000EB
ë
euml
U+000EB
ë
euro;
U+020AC
€
excl;
U+00021
!
exist;
U+02203
∃
Exists;
U+02203
∃
expectation;
U+02130
ℰ
ExponentialE;
U+02147
ⅇ
exponentiale;
U+02147
ⅇ
fallingdotseq;
U+02252
≒
Fcy;
U+00424
Ф
fcy;
U+00444
ф
female;
U+02640
♀
ffilig;
U+0FB03
ffi
fflig;
U+0FB00
ff
ffllig;
U+0FB04
ffl
Ffr;
U+1D509
㔉
ffr;
U+1D523
㔣
filig;
U+0FB01
fi
FilledSmallSquare;
U+025FC
◼
FilledVerySmallSquare;
U+025AA
▪
fjlig;
U+00066 U+0006A
fj
flat;
U+0266D
♭
fllig;
U+0FB02
fl
fltns;
U+025B1
▱
fnof;
U+00192
ƒ
Fopf;
U+1D53D
㔽
fopf;
U+1D557
㕗
ForAll;
U+02200
∀
Name
Character(s)
Glyph
forall;
U+02200
∀
fork;
U+022D4
⋔
forkv;
U+02AD9
⫙
Fouriertrf;
U+02131
ℱ
fpartint;
U+02A0D
⨍
frac12;
U+000BD
½
frac12
U+000BD
½
frac13;
U+02153
⅓
frac14;
U+000BC
¼
frac14
U+000BC
¼
frac15;
U+02155
⅕
frac16;
U+02159
⅙
frac18;
U+0215B
⅛
frac23;
U+02154
⅔
frac25;
U+02156
⅖
frac34;
U+000BE
¾
frac34
U+000BE
¾
frac35;
U+02157
⅗
frac38;
U+0215C
⅜
frac45;
U+02158
⅘
frac56;
U+0215A
⅚
frac58;
U+0215D
⅝
frac78;
U+0215E
⅞
frasl;
U+02044
⁄
frown;
U+02322
⌢
Fscr;
U+02131
ℱ
fscr;
U+1D4BB
㖻
gacute;
U+001F5
ǵ
Gamma;
U+00393
Γ
gamma;
U+003B3
γ
Gammad;
U+003DC
Ϝ
gammad;
U+003DD
ϝ
gap;
U+02A86
⪆
Gbreve;
U+0011E
Ğ
gbreve;
U+0011F
ğ
Gcedil;
U+00122
Ģ
Gcirc;
U+0011C
Ĝ
gcirc;
U+0011D
ĝ
Gcy;
U+00413
Г
gcy;
U+00433
г
Gdot;
U+00120
Ġ
gdot;
U+00121
ġ
gE;
U+02267
≧
ge;
U+02265
≥
gEl;
U+02A8C
⪌
gel;
U+022DB
⋛
geq;
U+02265
≥
geqq;
U+02267
≧
geqslant;
U+02A7E
⩾
ges;
U+02A7E
⩾
gescc;
U+02AA9
⪩
gesdot;
U+02A80
⪀
gesdoto;
U+02A82
⪂
gesdotol;
U+02A84
⪄
gesl;
U+022DB U+0FE00
⋛︀
gesles;
U+02A94
⪔
Gfr;
U+1D50A
㔊
gfr;
U+1D524
㔤
Gg;
U+022D9
⋙
gg;
U+0226B
≫
ggg;
U+022D9
⋙
gimel;
U+02137
ℷ
GJcy;
U+00403
Ѓ
gjcy;
U+00453
ѓ
gl;
U+02277
≷
gla;
U+02AA5
⪥
glE;
U+02A92
⪒
glj;
U+02AA4
⪤
gnap;
U+02A8A
⪊
gnapprox;
U+02A8A
⪊
gnE;
U+02269
≩
gne;
U+02A88
⪈
gneq;
U+02A88
⪈
gneqq;
U+02269
≩
gnsim;
U+022E7
⋧
Gopf;
U+1D53E
㔾
gopf;
U+1D558
㕘
grave;
U+00060
`
GreaterEqual;
U+02265
≥
GreaterEqualLess;
U+022DB
⋛
GreaterFullEqual;
U+02267
≧
GreaterGreater;
U+02AA2
⪢
GreaterLess;
U+02277
≷
GreaterSlantEqual;
U+02A7E
⩾
GreaterTilde;
U+02273
≳
1055
772
Name
Character(s)
Glyph
Gscr;
U+1D4A2
㖢
gscr;
U+0210A
ℊ
gsim;
U+02273
≳
gsime;
U+02A8E
⪎
gsiml;
U+02A90
⪐
GT;
U+0003E
>
GT
U+0003E
>
Gt;
U+0226B
≫
gt;
U+0003E
>
gt
U+0003E
>
gtcc;
U+02AA7
⪧
gtcir;
U+02A7A
⩺
gtdot;
U+022D7
⋗
gtlPar;
U+02995
⦕
gtquest;
U+02A7C
⩼
gtrapprox;
U+02A86
⪆
gtrarr;
U+02978
⥸
gtrdot;
U+022D7
⋗
gtreqless;
U+022DB
⋛
gtreqqless;
U+02A8C
⪌
gtrless;
U+02277
≷
gtrsim;
U+02273
≳
gvertneqq;
U+02269 U+0FE00
≩︀
gvnE;
U+02269 U+0FE00
≩︀
Hacek;
U+002C7
ˇ
hairsp;
U+0200A
half;
U+000BD
½
hamilt;
U+0210B
ℋ
HARDcy;
U+0042A
Ъ
hardcy;
U+0044A
ъ
hArr;
U+021D4
⇔
harr;
U+02194
↔
harrcir;
U+02948
⥈
harrw;
U+021AD
↭
Hat;
U+0005E
^
hbar;
U+0210F
ℏ
Hcirc;
U+00124
Ĥ
hcirc;
U+00125
ĥ
hearts;
U+02665
♥
heartsuit;
U+02665
♥
hellip;
U+02026
…
hercon;
U+022B9
⊹
Hfr;
U+0210C
ℌ
hfr;
U+1D525
㔥
HilbertSpace;
U+0210B
ℋ
hksearow;
U+02925
⤥
hkswarow;
U+02926
⤦
hoarr;
U+021FF
⇿
homtht;
U+0223B
∻
hookleftarrow;
U+021A9
↩
hookrightarrow;
U+021AA
↪
Hopf;
U+0210D
ℍ
hopf;
U+1D559
㕙
horbar;
U+02015
―
HorizontalLine;
U+02500
─
Hscr;
U+0210B
ℋ
hscr;
U+1D4BD
㖽
hslash;
U+0210F
ℏ
Hstrok;
U+00126
Ħ
hstrok;
U+00127
ħ
HumpDownHump;
U+0224E
≎
HumpEqual;
U+0224F
≏
hybull;
U+02043
⁃
hyphen;
U+02010
‐
Iacute;
U+000CD
Í
Iacute
U+000CD
Í
iacute;
U+000ED
í
iacute
U+000ED
í
ic;
U+02063
Icirc;
U+000CE
Î
Icirc
U+000CE
Î
icirc;
U+000EE
î
icirc
U+000EE
î
Icy;
U+00418
И
icy;
U+00438
и
Idot;
U+00130
İ
IEcy;
U+00415
Е
iecy;
U+00435
е
iexcl;
U+000A1
¡
iexcl
U+000A1
¡
iff;
U+021D4
⇔
Ifr;
U+02111
ℑ
ifr;
U+1D526
㔦
Igrave;
U+000CC
Ì
Igrave
U+000CC
Ì
Name
Character(s)
Glyph
igrave;
U+000EC
ì
igrave
U+000EC
ì
ii;
U+02148
ⅈ
iiiint;
U+02A0C
⨌
iiint;
U+0222D
∭
iinfin;
U+029DC
⧜
iiota;
U+02129
℩
IJlig;
U+00132
IJ
ijlig;
U+00133
ij
Im;
U+02111
ℑ
Imacr;
U+0012A
Ī
imacr;
U+0012B
ī
image;
U+02111
ℑ
ImaginaryI;
U+02148
ⅈ
imagline;
U+02110
ℐ
imagpart;
U+02111
ℑ
imath;
U+00131
ı
imof;
U+022B7
⊷
imped;
U+001B5
Ƶ
Implies;
U+021D2
⇒
in;
U+02208
∈
incare;
U+02105
℅
infin;
U+0221E
∞
infintie;
U+029DD
⧝
inodot;
U+00131
ı
Int;
U+0222C
∬
int;
U+0222B
∫
intcal;
U+022BA
⊺
integers;
U+02124
ℤ
Integral;
U+0222B
∫
intercal;
U+022BA
⊺
Intersection;
U+022C2
⋂
intlarhk;
U+02A17
⨗
intprod;
U+02A3C
⨼
InvisibleComma;
U+02063
InvisibleTimes;
U+02062
IOcy;
U+00401
Ё
iocy;
U+00451
ё
Iogon;
U+0012E
Į
iogon;
U+0012F
į
Iopf;
U+1D540
㕀
iopf;
U+1D55A
㕚
Iota;
U+00399
Ι
iota;
U+003B9
ι
iprod;
U+02A3C
⨼
iquest;
U+000BF
¿
iquest
U+000BF
¿
Iscr;
U+02110
ℐ
iscr;
U+1D4BE
㖾
isin;
U+02208
∈
isindot;
U+022F5
⋵
isinE;
U+022F9
⋹
isins;
U+022F4
⋴
isinsv;
U+022F3
⋳
isinv;
U+02208
∈
it;
U+02062
Itilde;
U+00128
Ĩ
itilde;
U+00129
ĩ
Iukcy;
U+00406
І
iukcy;
U+00456
і
Iuml;
U+000CF
Ï
Iuml
U+000CF
Ï
iuml;
U+000EF
ï
iuml
U+000EF
ï
Jcirc;
U+00134
Ĵ
jcirc;
U+00135
ĵ
Jcy;
U+00419
Й
jcy;
U+00439
й
Jfr;
U+1D50D
㔍
jfr;
U+1D527
㔧
jmath;
U+00237
ȷ
Jopf;
U+1D541
㕁
jopf;
U+1D55B
㕛
Jscr;
U+1D4A5
㖥
jscr;
U+1D4BF
㖿
Jsercy;
U+00408
Ј
jsercy;
U+00458
ј
Jukcy;
U+00404
Є
jukcy;
U+00454
є
Kappa;
U+0039A
Κ
kappa;
U+003BA
κ
kappav;
U+003F0
ϰ
Kcedil;
U+00136
Ķ
kcedil;
U+00137
ķ
Kcy;
U+0041A
К
Name
Character(s)
Glyph
kcy;
U+0043A
к
Kfr;
U+1D50E
㔎
kfr;
U+1D528
㔨
kgreen;
U+00138
ĸ
KHcy;
U+00425
Х
khcy;
U+00445
х
KJcy;
U+0040C
Ќ
kjcy;
U+0045C
ќ
Kopf;
U+1D542
㕂
kopf;
U+1D55C
㕜
Kscr;
U+1D4A6
㖦
kscr;
U+1D4C0
㗀
lAarr;
U+021DA
⇚
Lacute;
U+00139
Ĺ
lacute;
U+0013A
ĺ
laemptyv;
U+029B4
⦴
lagran;
U+02112
ℒ
Lambda;
U+0039B
Λ
lambda;
U+003BB
λ
Lang;
U+027EA
⟪
lang;
U+027E8
⟨
langd;
U+02991
⦑
langle;
U+027E8
⟨
lap;
U+02A85
⪅
Laplacetrf;
U+02112
ℒ
laquo;
U+000AB
«
laquo
U+000AB
«
Larr;
U+0219E
↞
lArr;
U+021D0
⇐
larr;
U+02190
←
larrb;
U+021E4
⇤
larrbfs;
U+0291F
⤟
larrfs;
U+0291D
⤝
larrhk;
U+021A9
↩
larrlp;
U+021AB
↫
larrpl;
U+02939
⤹
larrsim;
U+02973
⥳
larrtl;
U+021A2
↢
lat;
U+02AAB
⪫
lAtail;
U+0291B
⤛
latail;
U+02919
⤙
late;
U+02AAD
⪭
lates;
U+02AAD U+0FE00
⪭︀
lBarr;
U+0290E
⤎
lbarr;
U+0290C
⤌
lbbrk;
U+02772
❲
lbrace;
U+0007B
{
lbrack;
U+0005B
[
lbrke;
U+0298B
⦋
lbrksld;
U+0298F
⦏
lbrkslu;
U+0298D
⦍
Lcaron;
U+0013D
Ľ
lcaron;
U+0013E
ľ
Lcedil;
U+0013B
Ļ
lcedil;
U+0013C
ļ
lceil;
U+02308
⌈
lcub;
U+0007B
{
Lcy;
U+0041B
Л
lcy;
U+0043B
л
ldca;
U+02936
⤶
ldquo;
U+0201C
“
ldquor;
U+0201E
„
ldrdhar;
U+02967
⥧
ldrushar;
U+0294B
⥋
ldsh;
U+021B2
↲
lE;
U+02266
≦
le;
U+02264
≤
LeftAngleBracket;
U+027E8
⟨
LeftArrow;
U+02190
←
Leftarrow;
U+021D0
⇐
leftarrow;
U+02190
←
LeftArrowBar;
U+021E4
⇤
LeftArrowRightArrow;
U+021C6
⇆
leftarrowtail;
U+021A2
↢
LeftCeiling;
U+02308
⌈
LeftDoubleBracket;
U+027E6
⟦
LeftDownTeeVector;
U+02961
⥡
LeftDownVector;
U+021C3
⇃
LeftDownVectorBar;
U+02959
⥙
LeftFloor;
U+0230A
⌊
leftharpoondown;
U+021BD
↽
leftharpoonup;
U+021BC
↼
leftleftarrows;
U+021C7
⇇
LeftRightArrow;
U+02194
↔
Leftrightarrow;
U+021D4
⇔
1056
767
Name
Character(s)
Glyph
leftrightarrow;
U+02194
↔
leftrightarrows;
U+021C6
⇆
leftrightharpoons;
U+021CB
⇋
leftrightsquigarrow;
U+021AD
↭
LeftRightVector;
U+0294E
⥎
LeftTee;
U+022A3
⊣
LeftTeeArrow;
U+021A4
↤
LeftTeeVector;
U+0295A
⥚
leftthreetimes;
U+022CB
⋋
LeftTriangle;
U+022B2
⊲
LeftTriangleBar;
U+029CF
⧏
LeftTriangleEqual;
U+022B4
⊴
LeftUpDownVector;
U+02951
⥑
LeftUpTeeVector;
U+02960
⥠
LeftUpVector;
U+021BF
↿
LeftUpVectorBar;
U+02958
⥘
LeftVector;
U+021BC
↼
LeftVectorBar;
U+02952
⥒
lEg;
U+02A8B
⪋
leg;
U+022DA
⋚
leq;
U+02264
≤
leqq;
U+02266
≦
leqslant;
U+02A7D
⩽
les;
U+02A7D
⩽
lescc;
U+02AA8
⪨
lesdot;
U+02A7F
⩿
lesdoto;
U+02A81
⪁
lesdotor;
U+02A83
⪃
lesg;
U+022DA U+0FE00
⋚︀
lesges;
U+02A93
⪓
lessapprox;
U+02A85
⪅
lessdot;
U+022D6
⋖
lesseqgtr;
U+022DA
⋚
lesseqqgtr;
U+02A8B
⪋
LessEqualGreater;
U+022DA
⋚
LessFullEqual;
U+02266
≦
LessGreater;
U+02276
≶
lessgtr;
U+02276
≶
LessLess;
U+02AA1
⪡
lesssim;
U+02272
≲
LessSlantEqual;
U+02A7D
⩽
LessTilde;
U+02272
≲
lfisht;
U+0297C
⥼
lfloor;
U+0230A
⌊
Lfr;
U+1D50F
㔏
lfr;
U+1D529
㔩
lg;
U+02276
≶
lgE;
U+02A91
⪑
lHar;
U+02962
⥢
lhard;
U+021BD
↽
lharu;
U+021BC
↼
lharul;
U+0296A
⥪
lhblk;
U+02584
▄
LJcy;
U+00409
Љ
ljcy;
U+00459
љ
Ll;
U+022D8
⋘
ll;
U+0226A
≪
llarr;
U+021C7
⇇
llcorner;
U+0231E
⌞
Lleftarrow;
U+021DA
⇚
llhard;
U+0296B
⥫
lltri;
U+025FA
◺
Lmidot;
U+0013F
Ŀ
lmidot;
U+00140
ŀ
lmoust;
U+023B0
⎰
lmoustache;
U+023B0
⎰
lnap;
U+02A89
⪉
lnapprox;
U+02A89
⪉
lnE;
U+02268
≨
lne;
U+02A87
⪇
lneq;
U+02A87
⪇
lneqq;
U+02268
≨
lnsim;
U+022E6
⋦
loang;
U+027EC
⟬
loarr;
U+021FD
⇽
lobrk;
U+027E6
⟦
LongLeftArrow;
U+027F5
⟵
Longleftarrow;
U+027F8
⟸
longleftarrow;
U+027F5
⟵
LongLeftRightArrow;
U+027F7
⟷
Longleftrightarrow;
U+027FA
⟺
longleftrightarrow;
U+027F7
⟷
longmapsto;
U+027FC
⟼
LongRightArrow;
U+027F6
⟶
Longrightarrow;
U+027F9
⟹
Name
Character(s)
Glyph
longrightarrow;
U+027F6
⟶
looparrowleft;
U+021AB
↫
looparrowright;
U+021AC
↬
lopar;
U+02985
⦅
Lopf;
U+1D543
㕃
lopf;
U+1D55D
㕝
loplus;
U+02A2D
⨭
lotimes;
U+02A34
⨴
lowast;
U+02217
∗
lowbar;
U+0005F
_
LowerLeftArrow;
U+02199
↙
LowerRightArrow;
U+02198
↘
loz;
U+025CA
◊
lozenge;
U+025CA
◊
lozf;
U+029EB
⧫
lpar;
U+00028
(
lparlt;
U+02993
⦓
lrarr;
U+021C6
⇆
lrcorner;
U+0231F
⌟
lrhar;
U+021CB
⇋
lrhard;
U+0296D
⥭
lrm;
U+0200E
lrtri;
U+022BF
⊿
lsaquo;
U+02039
‹
Lscr;
U+02112
ℒ
lscr;
U+1D4C1
㗁
Lsh;
U+021B0
↰
lsh;
U+021B0
↰
lsim;
U+02272
≲
lsime;
U+02A8D
⪍
lsimg;
U+02A8F
⪏
lsqb;
U+0005B
[
lsquo;
U+02018
‘
lsquor;
U+0201A
‚
Lstrok;
U+00141
Ł
lstrok;
U+00142
ł
LT;
U+0003C
<
LT
U+0003C
<
Lt;
U+0226A
≪
lt;
U+0003C
<
lt
U+0003C
<
ltcc;
U+02AA6
⪦
ltcir;
U+02A79
⩹
ltdot;
U+022D6
⋖
lthree;
U+022CB
⋋
ltimes;
U+022C9
⋉
ltlarr;
U+02976
⥶
ltquest;
U+02A7B
⩻
ltri;
U+025C3
◃
ltrie;
U+022B4
⊴
ltrif;
U+025C2
◂
ltrPar;
U+02996
⦖
lurdshar;
U+0294A
⥊
luruhar;
U+02966
⥦
lvertneqq;
U+02268 U+0FE00
≨︀
lvnE;
U+02268 U+0FE00
≨︀
macr;
U+000AF
¯
macr
U+000AF
¯
male;
U+02642
♂
malt;
U+02720
✠
maltese;
U+02720
✠
Map;
U+02905
⤅
map;
U+021A6
↦
mapsto;
U+021A6
↦
mapstodown;
U+021A7
↧
mapstoleft;
U+021A4
↤
mapstoup;
U+021A5
↥
marker;
U+025AE
▮
mcomma;
U+02A29
⨩
Mcy;
U+0041C
М
mcy;
U+0043C
м
mdash;
U+02014
—
mDDot;
U+0223A
∺
measuredangle;
U+02221
∡
MediumSpace;
U+0205F
Mellintrf;
U+02133
ℳ
Mfr;
U+1D510
㔐
mfr;
U+1D52A
㔪
mho;
U+02127
℧
micro;
U+000B5
µ
micro
U+000B5
µ
mid;
U+02223
∣
midast;
U+0002A
*
midcir;
U+02AF0
⫰
middot;
U+000B7
·
Name
Character(s)
Glyph
middot
U+000B7
·
minus;
U+02212
−
minusb;
U+0229F
⊟
minusd;
U+02238
∸
minusdu;
U+02A2A
⨪
MinusPlus;
U+02213
∓
mlcp;
U+02ADB
⫛
mldr;
U+02026
…
mnplus;
U+02213
∓
models;
U+022A7
⊧
Mopf;
U+1D544
㕄
mopf;
U+1D55E
㕞
mp;
U+02213
∓
Mscr;
U+02133
ℳ
mscr;
U+1D4C2
㗂
mstpos;
U+0223E
∾
Mu;
U+0039C
Μ
mu;
U+003BC
μ
multimap;
U+022B8
⊸
mumap;
U+022B8
⊸
nabla;
U+02207
∇
Nacute;
U+00143
Ń
nacute;
U+00144
ń
nang;
U+02220 U+020D2
∠⃒
nap;
U+02249
≉
napE;
U+02A70 U+00338
⩰̸
napid;
U+0224B U+00338
≋̸
napos;
U+00149
ʼn
napprox;
U+02249
≉
natur;
U+0266E
♮
natural;
U+0266E
♮
naturals;
U+02115
ℕ
nbsp;
U+000A0
nbsp
U+000A0
nbump;
U+0224E U+00338
≎̸
nbumpe;
U+0224F U+00338
≏̸
ncap;
U+02A43
⩃
Ncaron;
U+00147
Ň
ncaron;
U+00148
ň
Ncedil;
U+00145
Ņ
ncedil;
U+00146
ņ
ncong;
U+02247
≇
ncongdot;
U+02A6D U+00338
⩭̸
ncup;
U+02A42
⩂
Ncy;
U+0041D
Н
ncy;
U+0043D
н
ndash;
U+02013
–
ne;
U+02260
≠
nearhk;
U+02924
⤤
neArr;
U+021D7
⇗
nearr;
U+02197
↗
nearrow;
U+02197
↗
nedot;
U+02250 U+00338
≐̸
NegativeMediumSpace;
U+0200B
NegativeThickSpace;
U+0200B
NegativeThinSpace;
U+0200B
NegativeVeryThinSpace;
U+0200B
nequiv;
U+02262
≢
nesear;
U+02928
⤨
nesim;
U+02242 U+00338
≂̸
NestedGreaterGreater;
U+0226B
≫
NestedLessLess;
U+0226A
≪
NewLine;
U+0000A
␊
nexist;
U+02204
∄
nexists;
U+02204
∄
Nfr;
U+1D511
㔑
nfr;
U+1D52B
㔫
ngE;
U+02267 U+00338
≧̸
nge;
U+02271
≱
ngeq;
U+02271
≱
ngeqq;
U+02267 U+00338
≧̸
ngeqslant;
U+02A7E U+00338
⩾̸
nges;
U+02A7E U+00338
⩾̸
nGg;
U+022D9 U+00338
⋙̸
ngsim;
U+02275
≵
nGt;
U+0226B U+020D2
≫⃒
ngt;
U+0226F
≯
ngtr;
U+0226F
≯
nGtv;
U+0226B U+00338
≫̸
nhArr;
U+021CE
⇎
nharr;
U+021AE
↮
nhpar;
U+02AF2
⫲
ni;
U+0220B
∋
nis;
U+022FC
⋼
nisd;
U+022FA
⋺
1057
774
Name
Character(s)
Glyph
niv;
U+0220B
∋
NJcy;
U+0040A
Њ
njcy;
U+0045A
њ
nlArr;
U+021CD
⇍
nlarr;
U+0219A
↚
nldr;
U+02025
‥
nlE;
U+02266 U+00338
≦̸
nle;
U+02270
≰
nLeftarrow;
U+021CD
⇍
nleftarrow;
U+0219A
↚
nLeftrightarrow;
U+021CE
⇎
nleftrightarrow;
U+021AE
↮
nleq;
U+02270
≰
nleqq;
U+02266 U+00338
≦̸
nleqslant;
U+02A7D U+00338
⩽̸
nles;
U+02A7D U+00338
⩽̸
nless;
U+0226E
≮
nLl;
U+022D8 U+00338
⋘̸
nlsim;
U+02274
≴
nLt;
U+0226A U+020D2
≪⃒
nlt;
U+0226E
≮
nltri;
U+022EA
⋪
nltrie;
U+022EC
⋬
nLtv;
U+0226A U+00338
≪̸
nmid;
U+02224
∤
NoBreak;
U+02060
NonBreakingSpace;
U+000A0
Nopf;
U+02115
ℕ
nopf;
U+1D55F
㕟
Not;
U+02AEC
⫬
not;
U+000AC
¬
not
U+000AC
¬
NotCongruent;
U+02262
≢
NotCupCap;
U+0226D
≭
NotDoubleVerticalBar;
U+02226
∦
NotElement;
U+02209
∉
NotEqual;
U+02260
≠
NotEqualTilde;
U+02242 U+00338
≂̸
NotExists;
U+02204
∄
NotGreater;
U+0226F
≯
NotGreaterEqual;
U+02271
≱
NotGreaterFullEqual;
U+02267 U+00338
≧̸
NotGreaterGreater;
U+0226B U+00338
≫̸
NotGreaterLess;
U+02279
≹
NotGreaterSlantEqual;
U+02A7E U+00338
⩾̸
NotGreaterTilde;
U+02275
≵
NotHumpDownHump;
U+0224E U+00338
≎̸
NotHumpEqual;
U+0224F U+00338
≏̸
notin;
U+02209
∉
notindot;
U+022F5 U+00338
⋵̸
notinE;
U+022F9 U+00338
⋹̸
notinva;
U+02209
∉
notinvb;
U+022F7
⋷
notinvc;
U+022F6
⋶
NotLeftTriangle;
U+022EA
⋪
NotLeftTriangleBar;
U+029CF U+00338
⧏̸
NotLeftTriangleEqual;
U+022EC
⋬
NotLess;
U+0226E
≮
NotLessEqual;
U+02270
≰
NotLessGreater;
U+02278
≸
NotLessLess;
U+0226A U+00338
≪̸
NotLessSlantEqual;
U+02A7D U+00338
⩽̸
NotLessTilde;
U+02274
≴
NotNestedGreaterGreater;
U+02AA2 U+00338
⪢̸
NotNestedLessLess;
U+02AA1 U+00338
⪡̸
notni;
U+0220C
∌
notniva;
U+0220C
∌
notnivb;
U+022FE
⋾
notnivc;
U+022FD
⋽
NotPrecedes;
U+02280
⊀
NotPrecedesEqual;
U+02AAF U+00338
⪯̸
NotPrecedesSlantEqual;
U+022E0
⋠
NotReverseElement;
U+0220C
∌
NotRightTriangle;
U+022EB
⋫
NotRightTriangleBar;
U+029D0 U+00338
⧐̸
NotRightTriangleEqual;
U+022ED
⋭
NotSquareSubset;
U+0228F U+00338
⊏̸
NotSquareSubsetEqual;
U+022E2
⋢
NotSquareSuperset;
U+02290 U+00338
⊐̸
NotSquareSupersetEqual;
U+022E3
⋣
NotSubset;
U+02282 U+020D2
⊂⃒
NotSubsetEqual;
U+02288
⊈
NotSucceeds;
U+02281
⊁
NotSucceedsEqual;
U+02AB0 U+00338
⪰̸
NotSucceedsSlantEqual;
U+022E1
⋡
Name
Character(s)
Glyph
NotSucceedsTilde;
U+0227F U+00338
≿̸
NotSuperset;
U+02283 U+020D2
⊃⃒
NotSupersetEqual;
U+02289
⊉
NotTilde;
U+02241
≁
NotTildeEqual;
U+02244
≄
NotTildeFullEqual;
U+02247
≇
NotTildeTilde;
U+02249
≉
NotVerticalBar;
U+02224
∤
npar;
U+02226
∦
nparallel;
U+02226
∦
nparsl;
U+02AFD U+020E5
⫽⃥
npart;
U+02202 U+00338
∂̸
npolint;
U+02A14
⨔
npr;
U+02280
⊀
nprcue;
U+022E0
⋠
npre;
U+02AAF U+00338
⪯̸
nprec;
U+02280
⊀
npreceq;
U+02AAF U+00338
⪯̸
nrArr;
U+021CF
⇏
nrarr;
U+0219B
↛
nrarrc;
U+02933 U+00338
⤳̸
nrarrw;
U+0219D U+00338
↝̸
nRightarrow;
U+021CF
⇏
nrightarrow;
U+0219B
↛
nrtri;
U+022EB
⋫
nrtrie;
U+022ED
⋭
nsc;
U+02281
⊁
nsccue;
U+022E1
⋡
nsce;
U+02AB0 U+00338
⪰̸
Nscr;
U+1D4A9
㖩
nscr;
U+1D4C3
㗃
nshortmid;
U+02224
∤
nshortparallel;
U+02226
∦
nsim;
U+02241
≁
nsime;
U+02244
≄
nsimeq;
U+02244
≄
nsmid;
U+02224
∤
nspar;
U+02226
∦
nsqsube;
U+022E2
⋢
nsqsupe;
U+022E3
⋣
nsub;
U+02284
⊄
nsubE;
U+02AC5 U+00338
⫅̸
nsube;
U+02288
⊈
nsubset;
U+02282 U+020D2
⊂⃒
nsubseteq;
U+02288
⊈
nsubseteqq;
U+02AC5 U+00338
⫅̸
nsucc;
U+02281
⊁
nsucceq;
U+02AB0 U+00338
⪰̸
nsup;
U+02285
⊅
nsupE;
U+02AC6 U+00338
⫆̸
nsupe;
U+02289
⊉
nsupset;
U+02283 U+020D2
⊃⃒
nsupseteq;
U+02289
⊉
nsupseteqq;
U+02AC6 U+00338
⫆̸
ntgl;
U+02279
≹
Ntilde;
U+000D1
Ñ
Ntilde
U+000D1
Ñ
ntilde;
U+000F1
ñ
ntilde
U+000F1
ñ
ntlg;
U+02278
≸
ntriangleleft;
U+022EA
⋪
ntrianglelefteq;
U+022EC
⋬
ntriangleright;
U+022EB
⋫
ntrianglerighteq;
U+022ED
⋭
Nu;
U+0039D
Ν
nu;
U+003BD
ν
num;
U+00023
#
numero;
U+02116
№
numsp;
U+02007
nvap;
U+0224D U+020D2
≍⃒
nVDash;
U+022AF
⊯
nVdash;
U+022AE
⊮
nvDash;
U+022AD
⊭
nvdash;
U+022AC
⊬
nvge;
U+02265 U+020D2
≥⃒
nvgt;
U+0003E U+020D2
>⃒
nvHarr;
U+02904
⤄
nvinfin;
U+029DE
⧞
nvlArr;
U+02902
⤂
nvle;
U+02264 U+020D2
≤⃒
nvlt;
U+0003C U+020D2
<⃒
nvltrie;
U+022B4 U+020D2
⊴⃒
nvrArr;
U+02903
⤃
nvrtrie;
U+022B5 U+020D2
⊵⃒
nvsim;
U+0223C U+020D2
∼⃒
Name
Character(s)
Glyph
nwarhk;
U+02923
⤣
nwArr;
U+021D6
⇖
nwarr;
U+02196
↖
nwarrow;
U+02196
↖
nwnear;
U+02927
⤧
Oacute;
U+000D3
Ó
Oacute
U+000D3
Ó
oacute;
U+000F3
ó
oacute
U+000F3
ó
oast;
U+0229B
⊛
ocir;
U+0229A
⊚
Ocirc;
U+000D4
Ô
Ocirc
U+000D4
Ô
ocirc;
U+000F4
ô
ocirc
U+000F4
ô
Ocy;
U+0041E
О
ocy;
U+0043E
о
odash;
U+0229D
⊝
Odblac;
U+00150
Ő
odblac;
U+00151
ő
odiv;
U+02A38
⨸
odot;
U+02299
⊙
odsold;
U+029BC
⦼
OElig;
U+00152
Œ
oelig;
U+00153
œ
ofcir;
U+029BF
⦿
Ofr;
U+1D512
㔒
ofr;
U+1D52C
㔬
ogon;
U+002DB
˛
Ograve;
U+000D2
Ò
Ograve
U+000D2
Ò
ograve;
U+000F2
ò
ograve
U+000F2
ò
ogt;
U+029C1
⧁
ohbar;
U+029B5
⦵
ohm;
U+003A9
Ω
oint;
U+0222E
∮
olarr;
U+021BA
↺
olcir;
U+029BE
⦾
olcross;
U+029BB
⦻
oline;
U+0203E
‾
olt;
U+029C0
⧀
Omacr;
U+0014C
Ō
omacr;
U+0014D
ō
Omega;
U+003A9
Ω
omega;
U+003C9
ω
Omicron;
U+0039F
Ο
omicron;
U+003BF
ο
omid;
U+029B6
⦶
ominus;
U+02296
⊖
Oopf;
U+1D546
㕆
oopf;
U+1D560
㕠
opar;
U+029B7
⦷
OpenCurlyDoubleQuote;
U+0201C
“
OpenCurlyQuote;
U+02018
‘
operp;
U+029B9
⦹
oplus;
U+02295
⊕
Or;
U+02A54
⩔
or;
U+02228
∨
orarr;
U+021BB
↻
ord;
U+02A5D
⩝
order;
U+02134
ℴ
orderof;
U+02134
ℴ
ordf;
U+000AA
ª
ordf
U+000AA
ª
ordm;
U+000BA
º
ordm
U+000BA
º
origof;
U+022B6
⊶
oror;
U+02A56
⩖
orslope;
U+02A57
⩗
orv;
U+02A5B
⩛
oS;
U+024C8
Ⓢ
Oscr;
U+1D4AA
㖪
oscr;
U+02134
ℴ
Oslash;
U+000D8
Ø
Oslash
U+000D8
Ø
oslash;
U+000F8
ø
oslash
U+000F8
ø
osol;
U+02298
⊘
Otilde;
U+000D5
Õ
Otilde
U+000D5
Õ
otilde;
U+000F5
õ
otilde
U+000F5
õ
Otimes;
U+02A37
⨷
otimes;
U+02297
⊗
1058
773
Name
Character(s)
Glyph
otimesas;
U+02A36
⨶
Ouml;
U+000D6
Ö
Ouml
U+000D6
Ö
ouml;
U+000F6
ö
ouml
U+000F6
ö
ovbar;
U+0233D
⌽
OverBar;
U+0203E
‾
OverBrace;
U+023DE
⏞
OverBracket;
U+023B4
⎴
OverParenthesis;
U+023DC
⏜
par;
U+02225
∥
para;
U+000B6
¶
para
U+000B6
¶
parallel;
U+02225
∥
parsim;
U+02AF3
⫳
parsl;
U+02AFD
⫽
part;
U+02202
∂
PartialD;
U+02202
∂
Pcy;
U+0041F
П
pcy;
U+0043F
п
percnt;
U+00025
%
period;
U+0002E
.
permil;
U+02030
‰
perp;
U+022A5
⊥
pertenk;
U+02031
‱
Pfr;
U+1D513
㔓
pfr;
U+1D52D
㔭
Phi;
U+003A6
Φ
phi;
U+003C6
φ
phiv;
U+003D5
ϕ
phmmat;
U+02133
ℳ
phone;
U+0260E
☎
Pi;
U+003A0
Π
pi;
U+003C0
π
pitchfork;
U+022D4
⋔
piv;
U+003D6
ϖ
planck;
U+0210F
ℏ
planckh;
U+0210E
ℎ
plankv;
U+0210F
ℏ
plus;
U+0002B
+
plusacir;
U+02A23
⨣
plusb;
U+0229E
⊞
pluscir;
U+02A22
⨢
plusdo;
U+02214
∔
plusdu;
U+02A25
⨥
pluse;
U+02A72
⩲
PlusMinus;
U+000B1
±
plusmn;
U+000B1
±
plusmn
U+000B1
±
plussim;
U+02A26
⨦
plustwo;
U+02A27
⨧
pm;
U+000B1
±
Poincareplane;
U+0210C
ℌ
pointint;
U+02A15
⨕
Popf;
U+02119
ℙ
popf;
U+1D561
㕡
pound;
U+000A3
£
pound
U+000A3
£
Pr;
U+02ABB
⪻
pr;
U+0227A
≺
prap;
U+02AB7
⪷
prcue;
U+0227C
≼
prE;
U+02AB3
⪳
pre;
U+02AAF
⪯
prec;
U+0227A
≺
precapprox;
U+02AB7
⪷
preccurlyeq;
U+0227C
≼
Precedes;
U+0227A
≺
PrecedesEqual;
U+02AAF
⪯
PrecedesSlantEqual;
U+0227C
≼
PrecedesTilde;
U+0227E
≾
preceq;
U+02AAF
⪯
precnapprox;
U+02AB9
⪹
precneqq;
U+02AB5
⪵
precnsim;
U+022E8
⋨
precsim;
U+0227E
≾
Prime;
U+02033
″
prime;
U+02032
′
primes;
U+02119
ℙ
prnap;
U+02AB9
⪹
prnE;
U+02AB5
⪵
prnsim;
U+022E8
⋨
prod;
U+0220F
∏
Product;
U+0220F
∏
profalar;
U+0232E
⌮
Name
Character(s)
Glyph
profline;
U+02312
⌒
profsurf;
U+02313
⌓
prop;
U+0221D
∝
Proportion;
U+02237
∷
Proportional;
U+0221D
∝
propto;
U+0221D
∝
prsim;
U+0227E
≾
prurel;
U+022B0
⊰
Pscr;
U+1D4AB
㖫
pscr;
U+1D4C5
㗅
Psi;
U+003A8
Ψ
psi;
U+003C8
ψ
puncsp;
U+02008
Qfr;
U+1D514
㔔
qfr;
U+1D52E
㔮
qint;
U+02A0C
⨌
Qopf;
U+0211A
ℚ
qopf;
U+1D562
㕢
qprime;
U+02057
⁗
Qscr;
U+1D4AC
㖬
qscr;
U+1D4C6
㗆
quaternions;
U+0210D
ℍ
quatint;
U+02A16
⨖
quest;
U+0003F
?
questeq;
U+0225F
≟
QUOT;
U+00022
"
QUOT
U+00022
"
quot;
U+00022
"
quot
U+00022
"
rAarr;
U+021DB
⇛
race;
U+0223D U+00331
∽̱
Racute;
U+00154
Ŕ
racute;
U+00155
ŕ
radic;
U+0221A
√
raemptyv;
U+029B3
⦳
Rang;
U+027EB
⟫
rang;
U+027E9
⟩
rangd;
U+02992
⦒
range;
U+029A5
⦥
rangle;
U+027E9
⟩
raquo;
U+000BB
»
raquo
U+000BB
»
Rarr;
U+021A0
↠
rArr;
U+021D2
⇒
rarr;
U+02192
→
rarrap;
U+02975
⥵
rarrb;
U+021E5
⇥
rarrbfs;
U+02920
⤠
rarrc;
U+02933
⤳
rarrfs;
U+0291E
⤞
rarrhk;
U+021AA
↪
rarrlp;
U+021AC
↬
rarrpl;
U+02945
⥅
rarrsim;
U+02974
⥴
Rarrtl;
U+02916
⤖
rarrtl;
U+021A3
↣
rarrw;
U+0219D
↝
rAtail;
U+0291C
⤜
ratail;
U+0291A
⤚
ratio;
U+02236
∶
rationals;
U+0211A
ℚ
RBarr;
U+02910
⤐
rBarr;
U+0290F
⤏
rbarr;
U+0290D
⤍
rbbrk;
U+02773
❳
rbrace;
U+0007D
}
rbrack;
U+0005D
]
rbrke;
U+0298C
⦌
rbrksld;
U+0298E
⦎
rbrkslu;
U+02990
⦐
Rcaron;
U+00158
Ř
rcaron;
U+00159
ř
Rcedil;
U+00156
Ŗ
rcedil;
U+00157
ŗ
rceil;
U+02309
⌉
rcub;
U+0007D
}
Rcy;
U+00420
Р
rcy;
U+00440
р
rdca;
U+02937
⤷
rdldhar;
U+02969
⥩
rdquo;
U+0201D
”
rdquor;
U+0201D
”
rdsh;
U+021B3
↳
Re;
U+0211C
ℜ
real;
U+0211C
ℜ
Name
Character(s)
Glyph
realine;
U+0211B
ℛ
realpart;
U+0211C
ℜ
reals;
U+0211D
ℝ
rect;
U+025AD
▭
REG;
U+000AE
®
REG
U+000AE
®
reg;
U+000AE
®
reg
U+000AE
®
ReverseElement;
U+0220B
∋
ReverseEquilibrium;
U+021CB
⇋
ReverseUpEquilibrium;
U+0296F
⥯
rfisht;
U+0297D
⥽
rfloor;
U+0230B
⌋
Rfr;
U+0211C
ℜ
rfr;
U+1D52F
㔯
rHar;
U+02964
⥤
rhard;
U+021C1
⇁
rharu;
U+021C0
⇀
rharul;
U+0296C
⥬
Rho;
U+003A1
Ρ
rho;
U+003C1
ρ
rhov;
U+003F1
ϱ
RightAngleBracket;
U+027E9
⟩
RightArrow;
U+02192
→
Rightarrow;
U+021D2
⇒
rightarrow;
U+02192
→
RightArrowBar;
U+021E5
⇥
RightArrowLeftArrow;
U+021C4
⇄
rightarrowtail;
U+021A3
↣
RightCeiling;
U+02309
⌉
RightDoubleBracket;
U+027E7
⟧
RightDownTeeVector;
U+0295D
⥝
RightDownVector;
U+021C2
⇂
RightDownVectorBar;
U+02955
⥕
RightFloor;
U+0230B
⌋
rightharpoondown;
U+021C1
⇁
rightharpoonup;
U+021C0
⇀
rightleftarrows;
U+021C4
⇄
rightleftharpoons;
U+021CC
⇌
rightrightarrows;
U+021C9
⇉
rightsquigarrow;
U+0219D
↝
RightTee;
U+022A2
⊢
RightTeeArrow;
U+021A6
↦
RightTeeVector;
U+0295B
⥛
rightthreetimes;
U+022CC
⋌
RightTriangle;
U+022B3
⊳
RightTriangleBar;
U+029D0
⧐
RightTriangleEqual;
U+022B5
⊵
RightUpDownVector;
U+0294F
⥏
RightUpTeeVector;
U+0295C
⥜
RightUpVector;
U+021BE
↾
RightUpVectorBar;
U+02954
⥔
RightVector;
U+021C0
⇀
RightVectorBar;
U+02953
⥓
ring;
U+002DA
˚
risingdotseq;
U+02253
≓
rlarr;
U+021C4
⇄
rlhar;
U+021CC
⇌
rlm;
U+0200F
rmoust;
U+023B1
⎱
rmoustache;
U+023B1
⎱
rnmid;
U+02AEE
⫮
roang;
U+027ED
⟭
roarr;
U+021FE
⇾
robrk;
U+027E7
⟧
ropar;
U+02986
⦆
Ropf;
U+0211D
ℝ
ropf;
U+1D563
㕣
roplus;
U+02A2E
⨮
rotimes;
U+02A35
⨵
RoundImplies;
U+02970
⥰
rpar;
U+00029
)
rpargt;
U+02994
⦔
rppolint;
U+02A12
⨒
rrarr;
U+021C9
⇉
Rrightarrow;
U+021DB
⇛
rsaquo;
U+0203A
›
Rscr;
U+0211B
ℛ
rscr;
U+1D4C7
㗇
Rsh;
U+021B1
↱
rsh;
U+021B1
↱
rsqb;
U+0005D
]
rsquo;
U+02019
’
rsquor;
U+02019
’
rthree;
U+022CC
⋌
1059
770
Name
Character(s)
Glyph
rtimes;
U+022CA
⋊
rtri;
U+025B9
▹
rtrie;
U+022B5
⊵
rtrif;
U+025B8
▸
rtriltri;
U+029CE
⧎
RuleDelayed;
U+029F4
⧴
ruluhar;
U+02968
⥨
rx;
U+0211E
℞
Sacute;
U+0015A
Ś
sacute;
U+0015B
ś
sbquo;
U+0201A
‚
Sc;
U+02ABC
⪼
sc;
U+0227B
≻
scap;
U+02AB8
⪸
Scaron;
U+00160
Š
scaron;
U+00161
š
sccue;
U+0227D
≽
scE;
U+02AB4
⪴
sce;
U+02AB0
⪰
Scedil;
U+0015E
Ş
scedil;
U+0015F
ş
Scirc;
U+0015C
Ŝ
scirc;
U+0015D
ŝ
scnap;
U+02ABA
⪺
scnE;
U+02AB6
⪶
scnsim;
U+022E9
⋩
scpolint;
U+02A13
⨓
scsim;
U+0227F
≿
Scy;
U+00421
С
scy;
U+00441
с
sdot;
U+022C5
⋅
sdotb;
U+022A1
⊡
sdote;
U+02A66
⩦
searhk;
U+02925
⤥
seArr;
U+021D8
⇘
searr;
U+02198
↘
searrow;
U+02198
↘
sect;
U+000A7
§
sect
U+000A7
§
semi;
U+0003B
;
seswar;
U+02929
⤩
setminus;
U+02216
∖
setmn;
U+02216
∖
sext;
U+02736
✶
Sfr;
U+1D516
㔖
sfr;
U+1D530
㔰
sfrown;
U+02322
⌢
sharp;
U+0266F
♯
SHCHcy;
U+00429
Щ
shchcy;
U+00449
щ
SHcy;
U+00428
Ш
shcy;
U+00448
ш
ShortDownArrow;
U+02193
↓
ShortLeftArrow;
U+02190
←
shortmid;
U+02223
∣
shortparallel;
U+02225
∥
ShortRightArrow;
U+02192
→
ShortUpArrow;
U+02191
↑
shy;
U+000AD
shy
U+000AD
Sigma;
U+003A3
Σ
sigma;
U+003C3
σ
sigmaf;
U+003C2
ς
sigmav;
U+003C2
ς
sim;
U+0223C
∼
simdot;
U+02A6A
⩪
sime;
U+02243
≃
simeq;
U+02243
≃
simg;
U+02A9E
⪞
simgE;
U+02AA0
⪠
siml;
U+02A9D
⪝
simlE;
U+02A9F
⪟
simne;
U+02246
≆
simplus;
U+02A24
⨤
simrarr;
U+02972
⥲
slarr;
U+02190
←
SmallCircle;
U+02218
∘
smallsetminus;
U+02216
∖
smashp;
U+02A33
⨳
smeparsl;
U+029E4
⧤
smid;
U+02223
∣
smile;
U+02323
⌣
smt;
U+02AAA
⪪
smte;
U+02AAC
⪬
smtes;
U+02AAC U+0FE00
⪬︀
Name
Character(s)
Glyph
SOFTcy;
U+0042C
Ь
softcy;
U+0044C
ь
sol;
U+0002F
/
solb;
U+029C4
⧄
solbar;
U+0233F
⌿
Sopf;
U+1D54A
㕊
sopf;
U+1D564
㕤
spades;
U+02660
♠
spadesuit;
U+02660
♠
spar;
U+02225
∥
sqcap;
U+02293
⊓
sqcaps;
U+02293 U+0FE00
⊓︀
sqcup;
U+02294
⊔
sqcups;
U+02294 U+0FE00
⊔︀
Sqrt;
U+0221A
√
sqsub;
U+0228F
⊏
sqsube;
U+02291
⊑
sqsubset;
U+0228F
⊏
sqsubseteq;
U+02291
⊑
sqsup;
U+02290
⊐
sqsupe;
U+02292
⊒
sqsupset;
U+02290
⊐
sqsupseteq;
U+02292
⊒
squ;
U+025A1
□
Square;
U+025A1
□
square;
U+025A1
□
SquareIntersection;
U+02293
⊓
SquareSubset;
U+0228F
⊏
SquareSubsetEqual;
U+02291
⊑
SquareSuperset;
U+02290
⊐
SquareSupersetEqual;
U+02292
⊒
SquareUnion;
U+02294
⊔
squarf;
U+025AA
▪
squf;
U+025AA
▪
srarr;
U+02192
→
Sscr;
U+1D4AE
㖮
sscr;
U+1D4C8
㗈
ssetmn;
U+02216
∖
ssmile;
U+02323
⌣
sstarf;
U+022C6
⋆
Star;
U+022C6
⋆
star;
U+02606
☆
starf;
U+02605
★
straightepsilon;
U+003F5
ϵ
straightphi;
U+003D5
ϕ
strns;
U+000AF
¯
Sub;
U+022D0
⋐
sub;
U+02282
⊂
subdot;
U+02ABD
⪽
subE;
U+02AC5
⫅
sube;
U+02286
⊆
subedot;
U+02AC3
⫃
submult;
U+02AC1
⫁
subnE;
U+02ACB
⫋
subne;
U+0228A
⊊
subplus;
U+02ABF
⪿
subrarr;
U+02979
⥹
Subset;
U+022D0
⋐
subset;
U+02282
⊂
subseteq;
U+02286
⊆
subseteqq;
U+02AC5
⫅
SubsetEqual;
U+02286
⊆
subsetneq;
U+0228A
⊊
subsetneqq;
U+02ACB
⫋
subsim;
U+02AC7
⫇
subsub;
U+02AD5
⫕
subsup;
U+02AD3
⫓
succ;
U+0227B
≻
succapprox;
U+02AB8
⪸
succcurlyeq;
U+0227D
≽
Succeeds;
U+0227B
≻
SucceedsEqual;
U+02AB0
⪰
SucceedsSlantEqual;
U+0227D
≽
SucceedsTilde;
U+0227F
≿
succeq;
U+02AB0
⪰
succnapprox;
U+02ABA
⪺
succneqq;
U+02AB6
⪶
succnsim;
U+022E9
⋩
succsim;
U+0227F
≿
SuchThat;
U+0220B
∋
Sum;
U+02211
∑
sum;
U+02211
∑
sung;
U+0266A
♪
Sup;
U+022D1
⋑
sup;
U+02283
⊃
Name
Character(s)
Glyph
sup1;
U+000B9
¹
sup1
U+000B9
¹
sup2;
U+000B2
²
sup2
U+000B2
²
sup3;
U+000B3
³
sup3
U+000B3
³
supdot;
U+02ABE
⪾
supdsub;
U+02AD8
⫘
supE;
U+02AC6
⫆
supe;
U+02287
⊇
supedot;
U+02AC4
⫄
Superset;
U+02283
⊃
SupersetEqual;
U+02287
⊇
suphsol;
U+027C9
⟉
suphsub;
U+02AD7
⫗
suplarr;
U+0297B
⥻
supmult;
U+02AC2
⫂
supnE;
U+02ACC
⫌
supne;
U+0228B
⊋
supplus;
U+02AC0
⫀
Supset;
U+022D1
⋑
supset;
U+02283
⊃
supseteq;
U+02287
⊇
supseteqq;
U+02AC6
⫆
supsetneq;
U+0228B
⊋
supsetneqq;
U+02ACC
⫌
supsim;
U+02AC8
⫈
supsub;
U+02AD4
⫔
supsup;
U+02AD6
⫖
swarhk;
U+02926
⤦
swArr;
U+021D9
⇙
swarr;
U+02199
↙
swarrow;
U+02199
↙
swnwar;
U+0292A
⤪
szlig;
U+000DF
ß
szlig
U+000DF
ß
Tab;
U+00009
␉
target;
U+02316
⌖
Tau;
U+003A4
Τ
tau;
U+003C4
τ
tbrk;
U+023B4
⎴
Tcaron;
U+00164
Ť
tcaron;
U+00165
ť
Tcedil;
U+00162
Ţ
tcedil;
U+00163
ţ
Tcy;
U+00422
Т
tcy;
U+00442
т
tdot;
U+020DB
◌⃛
telrec;
U+02315
⌕
Tfr;
U+1D517
㔗
tfr;
U+1D531
㔱
there4;
U+02234
∴
Therefore;
U+02234
∴
therefore;
U+02234
∴
Theta;
U+00398
Θ
theta;
U+003B8
θ
thetasym;
U+003D1
ϑ
thetav;
U+003D1
ϑ
thickapprox;
U+02248
≈
thicksim;
U+0223C
∼
ThickSpace;
U+0205F U+0200A
thinsp;
U+02009
ThinSpace;
U+02009
thkap;
U+02248
≈
thksim;
U+0223C
∼
THORN;
U+000DE
Þ
THORN
U+000DE
Þ
thorn;
U+000FE
þ
thorn
U+000FE
þ
Tilde;
U+0223C
∼
tilde;
U+002DC
˜
TildeEqual;
U+02243
≃
TildeFullEqual;
U+02245
≅
TildeTilde;
U+02248
≈
times;
U+000D7
×
times
U+000D7
×
timesb;
U+022A0
⊠
timesbar;
U+02A31
⨱
timesd;
U+02A30
⨰
tint;
U+0222D
∭
toea;
U+02928
⤨
top;
U+022A4
⊤
topbot;
U+02336
⌶
topcir;
U+02AF1
⫱
Topf;
U+1D54B
㕋
1060
Documents you may be interested
Documents you may be interested