66
Sampling: WhatNyquistDidn’tSay,andWhattoDoAboutIt
Aliasing
By ignoring anything that goes on between samplesthe samplingprocess throws away
information abouttheoriginalsignal
2
. Thisinformation lossmustbetakenintoaccount
duringsystemdesign. Mostofthetime,whenfolksaredesigningsystemstheyaredoing
theiranalysisinthefrequencydomain.Whenyouaredoingyourdesignfromthispointof
viewyoucallthiseffectaliasing,andyoucaneasilyexpressitandmodelitasafrequency-
domainphenomenon.
Tounderstandaliasing,considerasignalthatisapuresinusoid,andlookatit’ssampled
version:
x
k
=cos(!kT)
(2)
If you knowthe frequency of the originalsinewave you’llbeable toexactly predictthe
sampledsignal. Thisisaconceptiseasytograspandapply.Butthesampledsignalwon’t
necessarilyseemtobeatthesamefrequencyastheoriginalsignal: thereisanambiguity
in thesignalfrequencyequaltothe samplingrate. Thiscan beseenif you consider two
signals,oneatfrequencyf andoneatfrequencyf +
1
=
T
.Usingtrigonometry,youcansee
thatthesampledversionofthesetwosignalswillbeexactlythesame:
cos
2
f+
1
T
kT
=cos(2k+2fkT)=cos(2fkT)
(3)
Thismeansthatgivenapairofsampledversionsofthesignals,oneofthelowerfrequency
sinusoidandoneofthehigher,youwillhavenowayofdistinguishingthesesignalsfrom
oneanother. Thisambiguitybetweentwosignalsofdifferentfrequencies(ortwocompo-
nentsofonesignal)isaliasing,anditishappeningallthetimeintherealworld,anywhere
thatareal-worldsignalisbeingsampled.
Figure2onthenextpageshowsanexampleof aliasing. Twopossibleinputsine waves
areshown: onehasafrequencyof110Hz,theotherhasafrequencyof1110Hz.Bothare
sampledat1000Hz. Thedotsshowthevalueofthesinewavesatthesamplinginstants.
Asindicatedby(1)thesetwopossibleinputsbothresultinexactlythesameoutput: after
samplingyoucannottellthesetwosignalsapart.
Itisrare,however,for real-world signals toresemblepure sinewaves. Ingeneral,real-
world continuous-time signalsare more complex than than simple sine waves. But we
canusewhatwelearnaboutthesystem’sresponsetopuresinewaveinputtopredictthe
behavior ofasystemthatispresentedwithamorecomplexsignal. Thisisbecausemore
complexcontinuous-timesignalscanberepresentedassumsofcollectionsof sinewaves
atdifferentfrequenciesandamplitudes
3
.Formanysystemswecanbreakthesignaldown
2
If thesignalisperfectlybandlimitedthenno realinformationis lost—butyoucan’ttellthatjustby
lookingatthesampledsignal,aswe’llseelater
3
ThiscanbeexpressedformallyusingtheFouriertransform;Iwillrestrictmyselftoaninformaldiscussion
here,butworkssuchas[Opp83]giveverygood,formaldiscussionsoftheunderlyingmathematics. Fora
lessformal,butstillvalid,treatment,see[Lyons04].
TimWescott
3
WescottDesignServices