62
CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS
195
5.4 Implementing these models
We have functions sarp
gand sart
gthat carry out Gibbs sampling esti-
mation of the probit and tobit spatialautoregressive models. The documen-
tation for sarp
gis:
PURPOSE: Gibbs sampling spatial autoregressive Probit model
y = p*Wy + Xb + e, e is N(0,sige*V)
y is a 0,1 vector
V = diag(v1,v2,...vn), r/vi = ID chi(r)/r, r = Gamma(m,k)
B = N(c,T), sige = gamma(nu,d0), p = diffuse prior
---------------------------------------------------
USAGE: results = sarp_g(y,x,W,ndraw,nomit,prior,start)
where: y = dependent variable vector (nobs x 1)
x = independent variables matrix (nobs x nvar)
W = 1st order contiguity matrix (standardized, row-sums = 1)
ndraw = # of draws
nomit = # of initial draws omitted for burn-in
prior = a structure for: B = N(c,T), sige = gamma(nu,d0)
prior.beta, prior means for beta,
c above (default 0)
prior.bcov, prior beta covariance , T above (default 1e+12)
prior.rval, r prior hyperparameter, default=4
prior.m,
informative Gamma(m,k) prior on r
prior.k,
(default: not used)
prior.nu,
a prior parameter for sige
prior.d0,
(default: diffuse prior for sige)
prior.rmin = (optional) min rho used in sampling
prior.rmax = (optional) max rho used in sampling
start = (optional) structure containing starting values:
defaults: beta=1,sige=1,rho=0.5, V= ones(n,1)
start.b
= beta starting values (nvar x 1)
start.p
= rho starting value
(scalar)
start.sig = sige starting value (scalar)
start.V
= V starting values (n x 1)
---------------------------------------------------
RETURNS: a structure:
results.meth = 'sarp_g'
results.bdraw = bhat draws (ndraw-nomit x nvar)
results.sdraw = sige draws (ndraw-nomit x 1)
results.vmean = mean of vi draws (1 x nobs)
results.ymean = mean of y draws (1 x nobs)
results.rdraw = r draws (ndraw-nomit x 1) (if m,k input)
results.pdraw = p draws
(ndraw-nomit x 1)
results.pmean = b prior means, prior.beta from input
results.pstd = b prior std deviations sqrt(diag(T))
results.r
= value of hyperparameter r (if input)
results.r2mf = McFadden R-squared
results.rsqr = Estrella R-squared