119
INTERNATIONAL!JOURNAL!OF!RENEWABLE!ENERGY!RESEARCH!!
Lau"et"al.",!Vol.4,!No.3,!2014"
672!
[27] R. Jose, V. Thavasi, and S. Ramakrishna, "Metal
Oxides for Dye-Sensitized Solar Cells", Journal of the
American Ceramic Society, vol. 92, pp. 289-301,
2009.
[28] M. Grätzel, "Dye-sensitized solar cells", Journal of
Photochemistry and Photobiology C: Photochemistry
Reviews, vol. 4, pp. 145-153, 2003.
[29] H. Minoura, and T. Yoshida, "Electrodeposition of
ZnO/dye hybrid thin films for dye-sensitized solar
cells", Electrochemistry Tokyo, vol. 76, pp. 109, 2008.
[30] B. Tan, E. Toman, Y. Li, and Y. Wu, "Zinc stannate
(Zn2SnO4) dye-sensitized solar cells", Journal of the
American Chemical Society, vol. 129, pp. 4162-4163,
2007.
[31] H. Zheng, Y. Tachibana, and K. Kalantar-Zadeh,
"Dye-sensitized solar cells based on WO3", Langmuir,
vol. 26, pp. 19148-19152, 2010.
[32] S. Burnside, J.-E. Moser, K. Brooks, M. Grätzel, and
D. Cahen, "Nanocrystalline mesoporous strontium
titanate as photoelectrode material for photosensitized
solar devices: increasing photovoltage through
flatband potential engineering", The Journal of
Physical Chemistry B, vol. 103, pp. 9328-9332, 1999.
[33] N. Nang Dinh, M.C. Bernard, A. Hugot-Le Goff, T.
Stergiopoulos, and P. Falaras, "Photoelectrochemical
solar cells based on SnO2 nanocrystalline films",
Comptes Rendus Chimie, vol. 9, pp. 676-683, 2006.
[34] N.G. Park, G. Schlichthörl, J. Van De Lagemaat, H.M.
Cheong, A. Mascarenhas, and A.J. Frank, "Dye-
sensitized TiO2 solar cells: Structural and
photoelectrochemical
characterization
of
nanocrystalline electrodes formed from the hydrolysis
of TiCl4", Journal of Physical Chemistry B, vol. 103,
pp. 3308-3314, 1999.
[35] N.G. Park, J. Van De Lagemaat, and A.J. Frank,
"Comparison of dye-sensitized rutile- and anatase-
based TiO2 solar cells", Journal of Physical Chemistry
B, vol. 104, pp. 8989-8994, 2000.
[36] H.J. Koo, Y.J. Kim, Y.H. Lee, W.I. Lee, K. Kim, and
N.G. Park, "Nano-embossed hollow spherical TiO2 as
bifunctional material for high-efficiency dye-sensitized
solar cells", Advanced Materials, vol. 20, pp. 195-199,
2008.
[37] J.H. Park, S.Y. Jung, R. Kim, N.G. Park, J. Kim, and
S.S. Lee, "Nanostructured photoelectrode consisting of
TiO2 hollow spheres for non-volatile electrolyte-based
dye-sensitized solar cells", Journal of Power Sources,
vol. 194, pp. 574-579, 2009.
[38] Z.S. Wang, H. Kawauchi, T. Kashima, and H.
Arakawa,
"Significant
influence
of
TiO2
photoelectrode morphology on the energy conversion
efficiency of N719 dye-sensitized solar cell",
Coordination Chemistry Reviews, vol. 248, pp. 1381-
1389, 2004.
[39] A. Usami, "Theoretical simulations of optical
confinement in dye-sensitized nanocrystalline solar
cells", Solar Energy Materials and Solar Cells, vol. 64,
pp. 73-83, 2000.
[40] J. Ferber, and J. Luther, "Computer simulations of light
scattering and absorption in dye-sensitized solar cells",
Solar Energy Materials and Solar Cells, vol. 54, pp.
265-275, 1998.
[41] K. Guo, M. Li, X. Fang, L. Bai, M. Luoshan, F. Zhang,
and X. Zhao, "Improved properties of dye-sensitized
solar cells by multifunctional scattering layer of yolk-
shell-like TiO< sub> 2</sub> microspheres", Journal
of Power Sources, vol. 264, pp. 35-41, 2014.
[42] D.B. Menzies, R. Cervini, Y.B. Cheng, G.P. Simon,
and L. Spiccia, "Nanostructured ZrO2-coated TiO2
electrodes for dye-sensitised solar cells", Journal of
Sol-Gel Science and Technology, vol. 32, pp. 363-366,
2004.
[43] E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, and
J.R. Durrant, "Slow charge recombination in dye-
sensitised solar cells (DSSC) using Al2O3 coated
nanoporous TiO2 films", Chemical Communications,
pp. 1464-1465, 2002.
[44] E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, and
J.R. Durrant, "Control of charge recombination
dynamics in dye sensitized solar cells by the use of
conformally deposited metal oxide blocking layers",
Journal of the American Chemical Society, vol. 125,
pp. 475-482, 2003.
[45] S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U.
Bach, L. Schmidt-Mende, S.M. Zakeeruddin, A. Kay,
M.K. Nazeeruddin, and M. Grätzel, "Control of dark
current in photoelectrochemical (TiO2/I--I3-) and dye-
sensitized solar cells", Chemical Communications, pp.
4351-4353, 2005.
[46] Y. Wang, H. Yang, and H. Xu, "DNA-like dye-
sensitized solar cells based on TiO2 nanowire-covered
nanotube bilayer film electrodes", Materials Letters,
vol. 64, pp. 164-166, 2010.
[47] J.Y. Liao, B.X. Lei, H.Y. Chen, D.B. Kuang, and C.Y.
Su, "Oriented hierarchical single crystalline anatase
TiO2 nanowire arrays on Ti-foil substrate for efficient
flexible dye-sensitized solar cells", Energy and
Environmental Science, vol. 5, pp. 5750-5757, 2012.
[48] K. Zhu, N.R. Neale, A. Miedaner, and A.J. Frank,
"Enhanced charge-collection efficiencies and light
scattering in dye-sensitized solar cells using oriented
TiO2 nanotubes arrays", Nano Letters, vol. 7, pp. 69-
74, 2007.
[49] M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto,
and F. Wang, "Highly efficient dye-sensitized solar
cells with a titania thin-film electrode composed of a
network structure of single-crystal-like TiO2
nanowires made by the “oriented attachment”
mechanism", Journal of the American Chemical
Society, vol. 126, pp. 14943-14949, 2004.
119
INTERNATIONAL!JOURNAL!OF!RENEWABLE!ENERGY!RESEARCH!!
Lau"et"al.",!Vol.4,!No.3,!2014"
673!
[50] B.H. Lee, M.Y. Song, S.Y. Jang, S.M. Jo, S.Y. Kwak,
and D.Y. Kim, "Charge transport characteristics of
high efficiency dye-sensitized solar cells based on
electrospun TiO2 nanorod photoelectrodes", Journal of
Physical Chemistry C, vol. 113, pp. 21453-21457,
2009.
[51] C.J. Lin, W.Y. Yu, and S.H. Chien, "Transparent
electrodes of ordered opened-end TiO2-nanotube
arrays for highly efficient dye-sensitized solar cells",
Journal of Materials Chemistry, vol. 20, pp. 1073-
1077, 2010.
[52] B. Tan, and Y. Wu, "Dye-sensitized solar cells based
on anatase TiO2 nanoparticle/nanowire composites",
Journal of Physical Chemistry B, vol. 110, pp. 15932-
15938, 2006.
[53] Y. Alivov, and Z.Y. Fan, "Efficiency of dye sensitized
solar cells based on TiO2 nanotubes filled with
nanoparticles", Applied Physics Letters, vol. 95, 2009.
[54] T.-H. Tsai, S.-C. Chiou, and S.-M. Chen,
"Enhancement of dye-sensitized solar cells by using
graphene-TiO2 composites as photoelectrochemical
working electrode", Int. J. Electrochem. Sci, vol. 6, pp.
3333-3343, 2011.
[55] M. Zhu, X. Li, W. Liu, and Y. Cui, "An investigation
on the photoelectrochemical properties of dye-
sensitized solar cells based on graphene–TiO2
composite photoanodes", Journal of Power Sources,
vol. 262, pp. 349-355, 2014.
[56] S. Ngamsinlapasathian, S. Sakulkhaemaruethai, S.
Pavasupree, A. Kitiyanan, T. Sreethawong, Y. Suzuki,
and S. Yoshikawa, "Highly efficient dye-sensitized
solar cell using nanocrystalline titania containing
nanotube structure", Journal of Photochemistry and
Photobiology A: Chemistry, vol. 164, pp. 145-151,
2004.
[57] S. Pavasupree, S. Ngamsinlapasathian, M. Nakajima,
Y. Suzuki, and S. Yoshikawa, "Synthesis,
characterization, photocatalytic activity and dye-
sensitized
solar
cell
performance
of
nanorods/nanoparticles TiO2 with mesoporous
structure", Journal of Photochemistry and
Photobiology A: Chemistry, vol. 184, pp. 163-169,
2006.
[58] P. Sun, X. Zhang, C. Wang, Y. Wei, L. Wang, and Y.
Liu, "Rutile TiO2 nanowire array infiltrated with
anatase nanoparticles as photoanode for dye-sensitized
solar cells: Enhanced cell performance via the rutile-
anatase heterojunction", Journal of Materials
Chemistry A, vol. 1, pp. 3309-3314, 2013.
[59] A.M. Bakhshayesh, M.R. Mohammadi, and D.J. Fray,
"Controlling electron transport rate and recombination
process of TiO2 dye-sensitized solar cells by design of
double-layer films with different arrangement modes",
Electrochimica Acta, vol. 78, pp. 384-391, 2012.
[60] Y. Qiu, W. Chen, and S. Yang, "Double-layered
photoanodes from variable-size anatase TiO2
nanospindles: A candidate for high-efficiency dye-
sensitized solar cells", Angewandte Chemie -
International Edition, vol. 49, pp. 3675-3679, 2010.
[61] F. Huang, D. Chen, X.L. Zhang, R.A. Caruso, and Y.B.
Cheng, "Dual-function scattering layer of
submicrometer-sized mesoporous TiO2 beads for high-
efficiency dyesensitized solar cells", Advanced
Functional Materials, vol. 20, pp. 1301-1305, 2010.
[62] F. Xu, X. Zhang, Y. Wu, D. Wu, Z. Gao, and K. Jiang,
"Facile synthesis of TiO2 hierarchical microspheres
assembled by ultrathin nanosheets for dye-sensitized
solar cells", Journal of Alloys and Compounds, vol.
574, pp. 227-232, 2013.
[63] J.Y. Liao, B.X. Lei, D.B. Kuang, and C.Y. Su, "Tri-
functional hierarchical TiO2 spheres consisting of
anatase nanorods and nanoparticles for high efficiency
dye-sensitized solar cells", Energy and Environmental
Science, vol. 4, pp. 4079-4085, 2011.
[64] J.Y. Liao, H.P. Lin, H.Y. Chen, D.B. Kuang, and C.Y.
Su, "High-performance dye-sensitized solar cells based
on hierarchical yolk-shell anatase TiO2 beads", Journal
of Materials Chemistry, vol. 22, pp. 1627-1633, 2012.
[65] Y.J. Kim, M.H. Lee, H.J. Kim, G. Lim, Y.S. Choi,
N.G. Park, K. Kim, and W.I. Lee, "Formation of
highly efficient dye-sensitized solar cells by
hierarchical pore generation with nanoporous TiO2
spheres", Advanced Materials, vol. 21, pp. 3668-3673,
2009.
[66] B.M. Klahr, and T.W. Hamann, "Performance
Enhancement and Limitations of Cobalt Bipyridyl
Redox Shuttles in Dye-Sensitized Solar Cells", The
Journal of Physical Chemistry C, vol. 113, pp. 14040-
14045, 2009.
[67] K.S. Liow, C.S. Sipaut, R.F. Mansa, and J. Dayou,
"Dye Sensitized Solar Cell Based on Polyethylene
Glycol/4,4’Diphenylmethane Diisocyanate Copolymer
Quasi Solid State Electrolyte", Applied Mechanics and
Materials, vol. 625, pp. 140-143, 2014.
[68] S.M. Feldt, E.A. Gibson, E. Gabrielsson, L. Sun, G.
Boschloo, and A. Hagfeldt, "Design of organic dyes
and cobalt polypyridine redox mediators for high-
efficiency dye-sensitized solar cells", Journal of the
American Chemical Society, vol. 132, pp. 16714-
16724, 2010.
[69] T.T. Trang Pham, T.M. Koh, K. Nonomura, Y.M.
Lam, N. Mathews, and S. Mhaisalkar, "Reducing
Mass-Transport Limitations in Cobalt-Electrolyte-
Based Dye-Sensitized Solar Cells by Photoanode
Modification", ChemPhysChem, vol. 15, pp. 1216-
1221, 2014.
[70] Y. Duan, N. Fu, Q. Zhang, Y. Fang, X. Zhou, and Y.
Lin, "Influence of Sn source on the performance of
dye-sensitized solar cells based on Sn-doped TiO2
photoanodes: A strategy for choosing an appropriate
doping source", Electrochimica Acta, vol. 107, pp.
473-480, 2013.
81
INTERNATIONAL!JOURNAL!OF!RENEWABLE!ENERGY!RESEARCH!!
Lau"et"al.",!Vol.4,!No.3,!2014"
674!
[71] J.K. Lee, and M. Yang, "Progress in light harvesting
and charge injection of dye-sensitized solar cells",
Materials Science and Engineering B: Solid-State
Materials for Advanced Technology, vol. 176, pp.
1142-1160, 2011.
[72] X. Lü, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang,
F. Xu, and S. Huang, "Improved-Performance Dye-
Sensitized solar cells using Nb-Doped TiO2
electrodes: Efficient electron Injection and transfer",
Advanced Functional Materials, vol. 20, pp. 509-515,
2010.
[73] M. Yang, D. Kim, H. Jha, K. Lee, J. Paul, and P.
Schmuki, "Nb doping of TiO2 nanotubes for an
enhanced efficiency of dye-sensitized solar cells",
Chemical Communications, vol. 47, pp. 2032-2034,
2011.
[74] H. Tian, L. Hu, C. Zhang, W. Liu, Y. Huang, L. Mo,
L. Guo, J. Sheng, and S. Dai, "Retarded charge
recombination in dye-sensitized nitrogen-doped TiO2
solar cells", Journal of Physical Chemistry C, vol. 114,
pp. 1627-1632, 2010.
[75] X. Zhang, F. Liu, Q.-L. Huang, G. Zhou, and Z.-S.
Wang, "Dye-sensitized W-doped TiO2 solar cells with
a tunable conduction band and suppressed charge
recombination", The Journal of Physical Chemistry C,
vol. 115, pp. 12665-12671, 2011.
[76] Y. Duan, N. Fu, Q. Liu, Y. Fang, X. Zhou, J. Zhang,
and Y. Lin, "Sn-doped TiO2 photoanode for dye-
sensitized solar cells", The Journal of Physical
Chemistry C, vol. 116, pp. 8888-8893, 2012.
[77] X. Lü, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang,
F. Xu, and S. Huang, "Improved!Performance
Dye!Sensitized Solar Cells Using Nb!Doped TiO2
Electrodes: Efficient Electron Injection and Transfer",
Advanced Functional Materials, vol. 20, pp. 509-515,
2010.
[78] Y. Xie, N. Huang, Y. Liu, W. Sun, H.F. Mehnane, S.
You, L. Wang, W. Liu, S. Guo, and X.-Z. Zhao,
"Photoelectrodes modification by N doping for dye-
sensitized solar cells", Electrochimica Acta, vol. 93,
pp. 202-206, 2013.
[79] S. Yang, S. Guo, D. Xu, H. Xue, H. Kou, J. Wang, and
G. Zhu, "Improved efficiency of dye-sensitized solar
cells applied with F-doped TiO2 electrodes", Journal
of Fluorine Chemistry, vol. 150, pp. 78-84, 2013.
[80] S.C.T. Lau, C.S. Sipaut, J. Dayou, and R.F. Mansa,
"Sol gel synthesized nanosilica as photoanode material
for dye sensitized solar cells (DSSCs) system",
Applied Mechanics and Materials, vol. 625, pp. 110-
113, 2014.
[81] J.-P. Rino, and N. Studart, "Structural correlations in
titanium dioxide", Physical Review B, vol. 59, pp.
6643-6649, 1999.
[82] L.E. Brus, "Electron–electron and electron!hole
interactions in small semiconductor crystallites: The
size dependence of the lowest excited electronic state",
The Journal of chemical physics, vol. 80, pp. 4403-
4409, 1984.
[83] V.A.L. Padavettan, Synthesis And Characterization Of
Silica Nanoparticles And Their Application As Fillers
In Silica-Bismaleimide Nanocomposite, PhD Thesis,
Universiti Sains Malaysia, 2009.
[84] A. Yelil Arasi, M. Hemma, P. Tamilselvi, and R.
Anbarasan, "Synthesis and characterization of SiO
2
nanoparticles by sol-gel process", Indian Journal of
Science, vol. 1, pp. 6-10, 2012.
[85] A.N. Trukhin, L.N. Skuja, A.G. Boganov, and V.S.
Rudenko, "The correlation of the 7.6 eV optical
absorption band in pure fused silicon dioxide with
twofold-coordinated silicon", Journal of Non-
Crystalline Solids, vol. 149, pp. 96-101, 1992.
[86] H. Lin, C. Huang, W. Li, C. Ni, S.I. Shah, and Y.-H.
Tseng, "Size dependency of nanocrystalline TiO2 on
its optical property and photocatalytic reactivity
exemplified by 2-chlorophenol", Applied Catalysis B:
Environmental, vol. 68, pp. 1-11, 2006.
!
Documents you may be interested
Documents you may be interested