105
pandas: powerful Python data analysis toolkit, Release 0.18.1
Table 35.69 – continued from previous page
keys()
Get the ‘info axis’(see Indexing for more)
kurt([axis,skipna,level,numeric_only])
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).
kurtosis([axis,skipna,level,numeric_only])
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).
last(offset)
Convenience method for subsetting final periods of time series data based on a date offset.
le(other[,axis])
Wrapper for comparison method le
lt(other[,axis])
Wrapper for comparison method lt
mad([axis,skipna,level])
Return the mean absolute deviation of the values for the requested axis
major_xs(key[,copy])
Return slice of panel along major axis
mask(cond[,other,inplace,axis,level,...])
Return an object ofsame shape as self and whose corresponding entries are from self where condis False and otherwise are from other.
max([axis,skipna,level,numeric_only])
This method returns the maximum ofthe values in the object.
mean([axis,skipna,level,numeric_only])
Return the mean ofthe values for the requested axis
median([axis,skipna,level,numeric_only])
Return the median of the values for the requested axis
min([axis,skipna,level,numeric_only])
This method returns the minimum of the values in the object.
minor_xs(key[,copy])
Return slice of panel along minoraxis
mod(other[,axis])
Modulo of series and other,element-wise (binary operator mod).
mul(other[,axis])
Multiplication of series and other,element-wise (binary operator mul).
multiply(other[,axis])
Multiplication of series and other,element-wise (binary operator mul).
ne(other[,axis])
Wrapper for comparison method ne
notnull()
Return a boolean same-sized object indicating if the values are not null.
pct_change([periods,fill_method,limit,freq])
Percent change over given number of periods.
pipe(func,*args,**kwargs)
Apply func(self,*args, **kwargs)
pop(item)
Return itemand drop from frame.
pow(other[,axis])
Exponential power of series and other, element-wise (binary operator pow).
prod([axis,skipna,level,numeric_only])
Return the product ofthe values for the requested axis
product([axis,skipna,level,numeric_only])
Return the product ofthe values for the requested axis
radd(other[,axis])
Addition of series and other,element-wise (binary operator radd).
rank([axis,method,numeric_only,...])
Compute numerical data ranks (1 through n)along axis.
rdiv(other[,axis])
Floating division of series and other,element-wise (binary operator rtruediv).
reindex([items,major_axis,minor_axis])
ConformPanel to new index with optional filling logic,placing NA/NaN in locations having no value in the previous index.
reindex_axis(labels[,axis,method,level,...]) Conforminputobjecttonewindexwithoptionalfillinglogic,placingNA/NaNinlocationshavingnovalueinthepreviousindex.
reindex_like(other[,method,copy,limit,...]) Returnanobjectwithmatchingindicestomyself.
rename([items,major_axis,minor_axis])
Alter axes input function or functions.
rename_axis(mapper[,axis,copy,inplace])
Alter index and / or columns using input function or functions.
replace([to_replace,value,inplace,limit,...])
Replace values given in ‘to_replace’with ‘value’.
resample(rule[,how,axis,fill_method,...])
Convenience method for frequency conversion and resampling of regular time-series data.
rfloordiv(other[,axis])
Integer division of series and other,element-wise (binary operator rfloordiv).
rmod(other[,axis])
Modulo of series and other,element-wise (binary operator rmod).
rmul(other[,axis])
Multiplication of series and other,element-wise (binary operator rmul).
round([decimals])
Round each value in Panel to a specified number of decimal places.
rpow(other[,axis])
Exponential power of series and other, element-wise (binary operator rpow).
rsub(other[,axis])
Subtraction of series and other,element-wise (binary operator rsub).
rtruediv(other[,axis])
Floating division of series and other,element-wise (binary operator rtruediv).
sample([n,frac,replace,weights,...])
Returns a random sample of items froman axis ofobject.
select(crit[,axis])
Return data corresponding to axis labels matching criteria
sem([axis,skipna,level,ddof,numeric_only])
Return unbiased standard errorof the meanover requested axis.
set_axis(axis,labels)
public verson ofaxis assignment
set_value(*args,**kwargs)
Quickly set single value at (item, major, minor) location
shift(*args,**kwargs)
Shift index by desired number ofperiods with an optional time freq.
skew([axis,skipna,level,numeric_only])
Return unbiased skew over requested axis
slice_shift([periods,axis])
Equivalent to shift without copying data.
sort_index([axis,level,ascending,...])
Sort object by labels (along an axis)
sort_values(by[,axis,ascending,inplace,...])
35.5. Panel
1497