74
pandas: powerful Python data analysis toolkit, Release 0.18.1
pandas.MultiIndex.size
MultiIndex.size
return the number ofelements inthe underlying data
pandas.MultiIndex.strides
MultiIndex.strides
return the strides ofthe underlying data
pandas.MultiIndex.values
MultiIndex.values
Methods
all([other])
any([other])
append(other)
Append a collection of Index options together
argmax([axis])
return a ndarray ofthe maximumargument indexer
argmin([axis])
return a ndarray ofthe minimum argument indexer
argsort(*args,**kwargs)
asof(label)
Fora sorted index,return the most recent label up to and including the passed label.
asof_locs(where,mask)
where : array oftimestamps
astype(dtype)
copy([names,dtype,levels,labels,deep,...])
Make a copy of this object.
delete(loc)
Make newindex with passed location deleted
diff(*args,**kwargs)
difference(other)
Compute sorted set difference of two MultiIndex objects
drop(labels[,level,errors])
Make newMultiIndex with passed list of labels deleted
drop_duplicates(*args,**kwargs)
Return Index with duplicate values removed
droplevel([level])
Return Index with requested level removed.
duplicated(*args,**kwargs)
Return boolean np.array denoting duplicate values
equal_levels(other)
Return True if the levels ofboth MultiIndex objects are the same
equals(other)
Determines if two MultiIndex objects have the same labeling information
factorize([sort,na_sentinel])
Encode the object as an enumerated type orcategorical variable
fillna([value,downcast])
Fill NA/NaNvalues with the specified value
format([space,sparsify,adjoin,names,...])
from_arrays(arrays[,sortorder,names])
Convert arrays to MultiIndex
from_product(iterables[,sortorder,names])
Make a MultiIndex from the cartesian product of multiple iterables
from_tuples(tuples[,sortorder,names])
Convert list of tuples to MultiIndex
get_duplicates()
get_indexer(target[,method,limit,tolerance])
Compute indexer and mask fornewindex given the current index.
get_indexer_for(target,**kwargs)
guaranteedreturn of an indexer even whennon-unique
get_indexer_non_unique(target)
return an indexer suitable for taking from a non unique index
get_level_values(level)
Return vector of label values for requested level, equal to the length
get_loc(key[,method])
Get integerlocation, slice or boolean mask forrequested label or tuple.
get_loc_level(key[,level,drop_level])
Get integerlocation slice for requested label or tuple
get_locs(tup)
Given a tuple of slices/lists/labels/boolean indexer to a level-wise
get_major_bounds([start,end,step,kind])
Foran ordered MultiIndex,compute the slice locations for input labels.
Continued on next page
1730
Chapter 35. API Reference